cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A031971 a(n) = Sum_{k=1..n} k^n.

Original entry on oeis.org

1, 5, 36, 354, 4425, 67171, 1200304, 24684612, 574304985, 14914341925, 427675990236, 13421957361110, 457593884876401, 16841089312342855, 665478473553144000, 28101527071305611528, 1262899292504270591313, 60182438244917445266889, 3031284048960901518840700
Offset: 1

Views

Author

Chris du Feu (chris(AT)beckingham0.demon.co.uk)

Keywords

Comments

From Alexander Adamchuk, Jul 21 2006: (Start)
p^(3k - 1) divides a(p^k) for prime p > 2 and k = 1, 2, 3, 4, ... or p^2 divides a(p) for prime p > 2. p^5 divides a(p^2) for prime p > 2. p^8 divides a(p^3) for prime p > 2. p^11 divides a(p^4) for prime p > 2.
p^2 divides a(2p) for prime p > 3. p^3 divides a(3p) for prime p > 2. p^2 divides a(4p) for prime p > 5. p^3 divides a(5p) for prime p > 3. p^2 divides a(6p) for prime p > 7.
p divides a(2p - 1) for all prime p. p^3 divides a(2p^2 - 1) for all prime p. p^5 divides a(2p^3 - 1) for all prime p.
p divides a((p - 1)/2) for p = 5, 13, 17, 29, 37, 41, 53, 61, ... = A002144 Pythagorean primes: primes of form 4n + 1.
(End)
If p prime then a(p-1) == -1 (mod p) [see De Koninck & Mercier reference]. Example: for p = 7, a(6) = 67171 = 7 * 9596 - 1. - Bernard Schott, Mar 06 2020

References

  • J.-M. De Koninck et A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 327 pp. 48-200, Ellipses, Paris (2004).
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 21.

Crossrefs

A diagonal of array A103438.
For a(n) mod n see A182398.

Programs

Formula

a(n) is asymptotic to (e/(e - 1))*n^n. - Benoit Cloitre, Dec 17 2003
a(n) = zeta(-n) - zeta(-n, n + 1), where zeta(s) is the Riemann zeta function and zeta(s, a) is the Hurwitz zeta function, a generalization of the Riemann zeta function. - Alexander Adamchuk, Jul 21 2006
a(n) == 1 (mod n) <==> n is in A014117 = 1, 2, 6, 42, 1806 (see the link "On the congruence ..."). - Jonathan Sondow, Oct 18 2013
a(A054377(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
a(n) = n! * [x^n] exp(x)*(exp(n*x) - 1)/(exp(x) - 1). - Ilya Gutkovskiy, Apr 07 2018
a(n) ~ ((e*n+1)/((e-1)*(n+1))) * n^n. - N. J. A. Sloane, Oct 13 2018, based on email from Claude F. Leibovici who claims this is slightly better than Cloitre's version when n is small.

A054377 Primary pseudoperfect numbers: numbers n > 1 such that 1/n + sum 1/p = 1, where the sum is over the primes p | n.

Original entry on oeis.org

2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

Primary pseudoperfect numbers are the solutions of the "differential equation" n' = n-1, where n' is the arithmetic derivative of n. - Paolo P. Lava, Nov 16 2009
Same as n > 1 such that 1 + sum n/p = n (and the only known numbers n > 1 satisfying the weaker condition that 1 + sum n/p is divisible by n). Hence a(n) is squarefree, and is pseudoperfect if n > 1. Remarkably, a(n) has exactly n (distinct) prime factors for n < 9. - Jonathan Sondow, Apr 21 2013
From the Wikipedia article: it is unknown whether there are infinitely many primary pseudoperfect numbers, or whether there are any odd primary pseudoperfect numbers. - Daniel Forgues, May 27 2013
Since the arithmetic derivative of a prime p is p' = 1, 2 is obviously the only prime in the sequence. - Daniel Forgues, May 29 2013
Just as 1 is not a prime number, 1 is also not a primary pseudoperfect number, according to the original definition by Butske, Jaje, and Mayernik, as well as Wikipedia and MathWorld. - Jonathan Sondow, Dec 01 2013
Is it always true that if a primary pseudoperfect number N > 2 is adjacent to a prime N-1 or N+1, then in fact N lies between twin primes N-1, N+1? See A235139. - Jonathan Sondow, Jan 05 2014
Also, integers n > 1 such that A069359(n) = n - 1. - Jonathan Sondow, Apr 16 2014

Examples

			From _Daniel Forgues_, May 24 2013: (Start)
With a(1) = 2, we have 1/2 + 1/2 = (1 + 1)/2 = 1;
with a(2) = 6 = 2 * 3, we have
  1/2 + 1/3 + 1/6 = (3 + 2 + 1)/6 = (1*3 + 3)/(2*3) = (1 + 1)/2 = 1;
with a(3) = 42 = 6 * 7, we have
  1/2 + 1/3 + 1/7 + 1/42 = (21 + 14 + 6 + 1)/42 =
  (3*7 + 2*7 + 7)/(6*7) = (3 + 2 + 1)/6 = 1;
with a(4) = 1806 = 42 * 43, we have
  1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = (903 + 602 + 258 + 42 + 1)/1806 =
  (21*43 + 14*43 + 6*43 + 43)/(42*43) = (21 + 14 + 6 + 1)/42 = 1;
with a(5) = 47058 (not oblong number), we have
  1/2 + 1/3 + 1/11 + 1/23 + 1/31 + 1/47058 =
  (23529 + 15686 + 4278 + 2046 + 1518 + 1)/47058 = 1.
For n = 1 to 8, a(n) has n prime factors:
  a(1) = 2
  a(2) = 2 * 3
  a(3) = 2 * 3 *  7
  a(4) = 2 * 3 *  7 * 43
  a(5) = 2 * 3 * 11 * 23 *  31
  a(6) = 2 * 3 * 11 * 23 *  31 * 47059
  a(7) = 2 * 3 * 11 * 17 * 101 *   149 *       3109
  a(8) = 2 * 3 * 11 * 23 *  31 * 47059 * 2217342227 * 1729101023519
If a(n)+1 is prime, then a(n)*[a(n)+1] is also primary pseudoperfect. We have the chains: a(1) -> a(2) -> a(3) -> a(4); a(5) -> a(6). (End)
A primary pseudoperfect number (greater than 2) is oblong if and only if it is not the initial member of a chain. - _Daniel Forgues_, May 29 2013
If a(n)-1 is prime, then a(n)*(a(n)-1) is a Giuga number (A007850). This occurs for a(2), a(3), and a(5). See A235139 and the link "The p-adic order . . .", Theorem 8 and Example 1. - _Jonathan Sondow_, Jan 06 2014
		

Crossrefs

Programs

  • Mathematica
    pQ[n_] := (f = FactorInteger[n]; 1/n + Sum[1/f[[i]][[1]], {i, Length[f]}] == 1)
    Select[Range[2, 10^6], pQ[#] &] (* Robert Price, Mar 14 2020 *)
  • PARI
    isok(n) = if (n > 1, my(f=factor(n)[,1]); 1/n + sum(k=1, #f, 1/f[k]) == 1); \\ Michel Marcus, Oct 05 2017
  • Python
    from sympy import primefactors
    A054377 = [n for n in range(2,10**5) if sum([n/p for p in primefactors(n)]) +1 == n] # Chai Wah Wu, Aug 20 2014
    

Formula

A031971(a(n)) (mod a(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
A069359(a(n)) = a(n) - 1. - Jonathan Sondow, Apr 16 2014
a(n) == 36*(n-2) + 6 (mod 288) for n = 2,3,..,8. - Kieren MacMillan and Jonathan Sondow, Sep 20 2017
Showing 1-2 of 2 results.