A031971
a(n) = Sum_{k=1..n} k^n.
Original entry on oeis.org
1, 5, 36, 354, 4425, 67171, 1200304, 24684612, 574304985, 14914341925, 427675990236, 13421957361110, 457593884876401, 16841089312342855, 665478473553144000, 28101527071305611528, 1262899292504270591313, 60182438244917445266889, 3031284048960901518840700
Offset: 1
Chris du Feu (chris(AT)beckingham0.demon.co.uk)
- J.-M. De Koninck et A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 327 pp. 48-200, Ellipses, Paris (2004).
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 21.
-
a031971 = sum . a089072_row -- Reinhard Zumkeller, Mar 18 2013
-
[&+[(k)^n: k in [0..n]]: n in [1..30]]; // Vincenzo Librandi, Apr 18 2011
-
a := n->sum('i'^n,'i'=1..n);
# alternative
A031971 := proc(n)
(bernoulli(n+1,n+1)-bernoulli(n+1))/(n+1) ;
end proc: # R. J. Mathar, May 10 2013
-
Table[Zeta[-n] - Zeta[-n, n + 1], {n, 25}] (* Alexander Adamchuk, Jul 21 2006 *)
Table[Total[Range[n]^n], {n,25}] (* T. D. Noe, Apr 19 2011 *)
Table[HarmonicNumber[n, -n], {n, 1, 25}] (* Jean-François Alcover, Apr 09 2015 *)
-
a(n)=sum(k=1,n,k^n) \\ Charles R Greathouse IV, Jun 05 2015
-
from sympy import harmonic
def A031971(n):
return harmonic(n,-n) # Chai Wah Wu, Feb 15 2020
A054377
Primary pseudoperfect numbers: numbers n > 1 such that 1/n + sum 1/p = 1, where the sum is over the primes p | n.
Original entry on oeis.org
2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1
From _Daniel Forgues_, May 24 2013: (Start)
With a(1) = 2, we have 1/2 + 1/2 = (1 + 1)/2 = 1;
with a(2) = 6 = 2 * 3, we have
1/2 + 1/3 + 1/6 = (3 + 2 + 1)/6 = (1*3 + 3)/(2*3) = (1 + 1)/2 = 1;
with a(3) = 42 = 6 * 7, we have
1/2 + 1/3 + 1/7 + 1/42 = (21 + 14 + 6 + 1)/42 =
(3*7 + 2*7 + 7)/(6*7) = (3 + 2 + 1)/6 = 1;
with a(4) = 1806 = 42 * 43, we have
1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = (903 + 602 + 258 + 42 + 1)/1806 =
(21*43 + 14*43 + 6*43 + 43)/(42*43) = (21 + 14 + 6 + 1)/42 = 1;
with a(5) = 47058 (not oblong number), we have
1/2 + 1/3 + 1/11 + 1/23 + 1/31 + 1/47058 =
(23529 + 15686 + 4278 + 2046 + 1518 + 1)/47058 = 1.
For n = 1 to 8, a(n) has n prime factors:
a(1) = 2
a(2) = 2 * 3
a(3) = 2 * 3 * 7
a(4) = 2 * 3 * 7 * 43
a(5) = 2 * 3 * 11 * 23 * 31
a(6) = 2 * 3 * 11 * 23 * 31 * 47059
a(7) = 2 * 3 * 11 * 17 * 101 * 149 * 3109
a(8) = 2 * 3 * 11 * 23 * 31 * 47059 * 2217342227 * 1729101023519
If a(n)+1 is prime, then a(n)*[a(n)+1] is also primary pseudoperfect. We have the chains: a(1) -> a(2) -> a(3) -> a(4); a(5) -> a(6). (End)
A primary pseudoperfect number (greater than 2) is oblong if and only if it is not the initial member of a chain. - _Daniel Forgues_, May 29 2013
If a(n)-1 is prime, then a(n)*(a(n)-1) is a Giuga number (A007850). This occurs for a(2), a(3), and a(5). See A235139 and the link "The p-adic order . . .", Theorem 8 and Example 1. - _Jonathan Sondow_, Jan 06 2014
- M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
- W. Butske, L. M. Jaje, and D. R. Mayernik, On the Equation Sum_{p|N} 1/p + 1/N = 1, Pseudoperfect numbers and partially weighted graphs, Math. Comput., 69 (1999), 407-420. [Title corrected by _Jonathan Sondow_, Apr 11 2012]
- J. M. Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^m + 2^m + ... + m^m == n (mod m) with n|m, arXiv:1309.7941 [math.NT], 2013.
- J. M. Grau, A. M. Oller-Marcén, and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- John Machacek, Egyptian Fractions and Prime Power Divisors, arXiv:1706.01008 [math.NT], 2017.
- J. Sondow and K. MacMillan, Reducing the Erdos-Moser equation 1^n + 2^n + . . . + k^n = (k+1)^n modulo k and k^2, Integers 11 (2011), #A34.
- J. Sondow and K. MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdos-Moser equation, Amer. Math. Monthly, 124 (2017) 232-240; arXiv:math/1812.06566 [math.NT], 2018.
- J. Sondow and E. Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 4.
- Eric Weisstein's World of Mathematics, Primary pseudoperfect number.
- Wikipedia, Primary pseudoperfect number.
- OEIS Wiki, Primary pseudoperfect numbers.
Cf.
A005835,
A007850,
A069359,
A168036,
A190272,
A191975,
A203618,
A216825,
A216826,
A230311,
A235137,
A235138,
A235139,
A236433.
-
pQ[n_] := (f = FactorInteger[n]; 1/n + Sum[1/f[[i]][[1]], {i, Length[f]}] == 1)
Select[Range[2, 10^6], pQ[#] &] (* Robert Price, Mar 14 2020 *)
-
isok(n) = if (n > 1, my(f=factor(n)[,1]); 1/n + sum(k=1, #f, 1/f[k]) == 1); \\ Michel Marcus, Oct 05 2017
-
from sympy import primefactors
A054377 = [n for n in range(2,10**5) if sum([n/p for p in primefactors(n)]) +1 == n] # Chai Wah Wu, Aug 20 2014
Showing 1-2 of 2 results.
Comments