cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A233588 Decimal expansion of the continued fraction prime(1) + prime(1)/(prime(2) + prime(2)/(prime(3) + prime(3)/(prime(4) + prime(4)/...))).

Original entry on oeis.org

2, 5, 6, 6, 5, 4, 3, 8, 3, 2, 1, 7, 1, 3, 8, 8, 8, 4, 4, 4, 6, 7, 5, 2, 9, 1, 0, 6, 3, 3, 2, 2, 8, 5, 7, 5, 1, 7, 8, 2, 9, 7, 2, 8, 2, 8, 7, 0, 2, 3, 1, 4, 6, 4, 5, 9, 6, 9, 7, 3, 3, 5, 2, 5, 4, 6, 6, 3, 9, 9, 7, 1, 9, 8, 9, 0, 4, 0, 0, 3, 4, 6, 2, 2, 3, 9, 8, 8, 5, 7, 1, 4, 7, 8, 0, 5, 6, 6, 5, 8, 9, 4, 1, 5, 3
Offset: 1

Views

Author

Stanislav Sykora, Jan 02 2014

Keywords

Comments

Given a nondecreasing sequence s(n) of natural numbers (such as, in this case, that of primes A000079), the corresponding continued fraction is bf(s(n)) = a(1) + a(1)/(a(2) + a(2)/(a(3) + a(3)/(...))).
For the inverse of this mapping of nondecreasing sequences of natural numbers into irrational real numbers greater than 1, see A233582.

Examples

			2.56654383217138884446752910633228575178297282870231464596973352546639971...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ Prime@ Range@ 57], 10, 111][[1]] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    See the link.

Formula

Equals 2 + 2/(3 + 3/(5 + 5/(7 + 7/(11 + 11/(13 + 13/(17 + ...)))))).

A233582 Coefficients of the generalized continued fraction expansion Pi = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

3, 21, 111, 113, 158, 160, 211, 216, 525, 1634, 1721, 7063, 8771, 15077, 26168, 58447, 223767, 254729, 587278, 1046086, 1491449, 1635223, 1689171, 2039096, 2290214, 13444599, 22666443, 1276179737, 4470200748
Offset: 1

Views

Author

Stanislav Sykora, Jan 02 2014

Keywords

Comments

Definition of "Blazys" generalized continued fraction expansion of an irrational real number x>1:
Set n=1,r=x; (ii) set a(n)=floor(r); (iii) set r=a(n)/(r-a(n)); (iv) increment n and iterate from point (ii).
For the inverse of this mapping, see A233588.

Crossrefs

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Pi, 33] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x,nmax)={local(c,v,k);
    v = vector(nmax);c = x;for(k=1,nmax,v[k] = floor(c);c = v[k]/(c-v[k]););return (v);}
    bx(Pi,1000) \\ Execution; use very high real precision

Formula

Pi = 3+3/(21+21/(111+111/(113+113/(158+...)))).

A233584 Coefficients of the generalized continued fraction expansion sqrt(e) = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

1, 1, 1, 1, 5, 9, 17, 109, 260, 2909, 3072, 3310, 3678, 6715, 35175, 37269, 439792, 1400459, 1472451, 4643918, 5683171, 44850176, 62252861, 145631385, 154435765, 371056666, 1685980637, 11196453405, 14795372939
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details on Blazys' expansions, see A233582.
Compared with simple continued fraction expansion for sqrt(e), this sequence starts soon growing very rapidly.

Crossrefs

Cf. A019774 (sqrt(e)), A058281 (simple continued fraction).
Cf. Blazys' expansions: A233582 (Pi), A233583, A233585, A233586, A233587 and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Sqrt@E, 35] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(exp(1/2), 100) \\ Execution; use high real precision

Formula

sqrt(e) = 1+1/(1+1/(1+1/(1+1/(5+5/(9+9/(17+17/(109+...))))))).

A233585 Coefficients of the generalized continued fraction expansion of the inverse of Euler constant, 1/gamma = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 4, 12, 39, 71, 83, 484, 1028, 1447, 9913, 31542, 526880, 685669, 1396494, 1534902, 2295194, 9521643, 9643315, 42421746, 183962859, 553915624, 557976754, 6111180351, 10671513549, 61650520975, 106532505646
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Crossrefs

Cf. A233582.
Cf. A001620 (gamma).
Cf. Blazys's expansions: A233582 (Pi), A233583(e), A233584 (sqrt(e)), A233586 (2*gamma), A233587 and Blazys's continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[1/EulerGamma, 35] (* Robert G. Wilson v, May 22 2014 *)
    BlazysExpansion[n_, mx_] := Reap[Nest[(1/(#/Sow[Floor[#]] - 1)) &, n, mx];][[-1, 1]]; BlazysExpansion[1/EulerGamma, 35] (* Jan Mangaldan, Jan 04 2017 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(1/Euler, 670) \\ Execution; use very high real precision

Formula

1/gamma = 1+1/(1+1/(2+2/(2+2/(2+2/(2+2/(4+4/(12+...))))))).

A233587 Coefficients of the generalized continued fraction expansion sqrt(7) = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

2, 3, 30, 34, 111, 235, 3775, 5052, 7352, 9091, 34991, 35530, 53424, 57290, 66023, 1409179, 1519111, 1725990, 1812396, 4370835, 4507156, 4655396, 44257080, 234755198, 261519946, 264374278, 273487975
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details on Blazys' expansions, see A233582.
Sqrt(7) is the first square root of a natural number with an a-periodic Blazys' expansion (see A233592 and A233593).

Crossrefs

Cf. Blazys' expansions: A233582 (Pi), A233583 (e), A233584 (sqrt(e)), A233585 (1/gamma), A233585 (2*gamma) and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Sqrt@7, 32] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(sqrt(7), 1000) \\ Execution; use very high real precision

Formula

sqrt(7) = 2+2/(3+3/(30+30/(34+34/(111+...)))).

A233586 Coefficients of the generalized continued fraction expansion of twice the Euler constant, 2*gamma = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

1, 6, 12, 19, 63, 263, 856, 2632, 7714, 9683, 888970, 1200867, 1691244, 2350415, 3433770, 4482812, 17544235, 48509602, 53801529, 114221223, 124712727, 997393454, 16681741997, 17954856574, 105651203040
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details on Blazys' expansions, see A233582.

Crossrefs

Cf. A001620 (gamma).
Cf. Blazys' expansions: A233582 (Pi), A233583 (e), A233584 (sqrt(e)), A233585 (1/gamma), A233587 and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[2 EulerGamma, 29] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(2*Euler, 670) \\ Execution; use very high real precision

Formula

2*gamma = 1+1/(6+6/(12+12/(19+19/(63+63/(263+...))))).

A233589 Decimal expansion of the continued fraction c(1) +c(1)/(c(2) +c(2)/(c(3) +c(3)/(c(4) +c(4)/....))), where c(i)=(i-1)!.

Original entry on oeis.org

1, 6, 9, 8, 8, 0, 4, 7, 6, 7, 6, 7, 0, 0, 0, 7, 2, 1, 1, 9, 5, 2, 6, 9, 0, 1, 1, 5, 9, 1, 4, 6, 4, 0, 4, 3, 2, 5, 5, 9, 7, 3, 0, 9, 3, 6, 6, 4, 9, 8, 3, 9, 6, 9, 7, 8, 1, 7, 4, 1, 9, 1, 7, 4, 2, 6, 8, 9, 2, 0, 0, 0
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Examples

			1.69880476767000721195269011591464043255973093664983969781741917426892...
		

Crossrefs

Cf. A233588.
Cf. A000142 (factorials), A006882 (double factorials).
Cf. Blazys' continued fractions: A233588, A233590, A233591 and Blazys' expansions: A233582, A233583, A233584, A233585, A233586, A233587.

Programs

  • Mathematica
    RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ Range[0, 18]!], 10, 111][[1]] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    See the link.

Formula

Equals 0!+0!/(1!+1!/(2!+2!/(3!+3!/(4!+...)))).
Equals simple continued fraction [0!!; 1!!, 2!!, 3!!, ..., n!!, ...] where the double factorial n!! = A006882(n). - Thomas Ordowski, Oct 21 2024

A233590 Decimal expansion of the continued fraction c(1) +c(1)/(c(2) +c(2)/(c(3) +c(3)/(c(4) +c(4)/....))), where c(i)=2^(i-1).

Original entry on oeis.org

1, 4, 0, 8, 6, 1, 5, 9, 7, 9, 7, 3, 5, 0, 0, 5, 2, 0, 5, 1, 3, 2, 3, 6, 2, 5, 9, 0, 2, 5, 5, 7, 9, 5, 2, 0, 9, 4, 8, 4, 5, 6, 3, 3, 7, 3, 6, 8, 6, 8, 8, 8, 3, 5, 3, 7, 0, 3, 9, 2, 7, 0, 2, 2, 3, 7, 9, 7, 5, 9, 9, 8
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details about this type of continued fraction, see A233588.
This one corresponds to the powers of two sequence.
Corresponds to the regular continued fraction 1,2,2,4,4,8,8,16,16,... = A060546. - Jeffrey Shallit, Jun 14 2016

Examples

			1.408615979735005205132362590255795209484563373686888353703927022...
		

Crossrefs

Cf. A000079 (2^n), A096658, A060546.
Cf. Blazys's continued fractions: A233588, A233589, A233591 and Blazys' expansions: A233582, A233583, A233584, A233585, A233586, A233587

Programs

  • Mathematica
    RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ (2^Range[0, 27])], 10, 111][[1]] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    See the link

Formula

Equals 1+1/(2+2/(4+4/(8+8/(16+16/(32+...))))).
Equals Product_{k>=0} ((1 - 2^(5*k + 2))*(1 - 2^(5*k + 3)))/((1 - 2^(5*k + 1))*(1 - 2^(5*k + 4))). - Antonio GraciĆ” Llorente, Mar 20 2024

A233591 Decimal expansion of the continued fraction c(1) +c(1)/(c(2) +c(2)/(c(3) +c(3)/(c(4) +c(4)/....))), where c(i)=i^2.

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 4, 0, 2, 4, 1, 8, 2, 6, 9, 0, 2, 7, 4, 8, 1, 4, 9, 3, 7, 1, 0, 0, 8, 6, 2, 2, 4, 0, 3, 9, 6, 1, 9, 0, 8, 1, 1, 4, 8, 7, 3, 5, 3, 6, 2, 3, 5, 9, 5, 5, 0, 1, 6, 6, 6, 5, 2, 2, 1, 2, 5, 2, 7, 5, 4, 3
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details on this type of continued fractions, see A233588.
This one corresponds to the squares of natural numbers.

Examples

			1.22628402418269027481493710086224039619081148735362359550166652...
		

Crossrefs

Cf. A000290 (n^2).
Cf. Blazys' continued fractions: A233588, A233589, A233591 and Blazys' expansions: A233582, A233583, A233584, A233585, A233586, A233587.

Programs

  • Mathematica
     RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ Range[45]^2], 10, 111][[1]] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    See the link

Formula

Equals 1+1/(4+4/(9+9/(16+16/(25+25/(36+...))))).

A254667 The nonnegative numbers with 2 instead of 1.

Original entry on oeis.org

0, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62
Offset: 0

Views

Author

Paul Curtz, Feb 04 2015

Keywords

Comments

An autosequence of the first kind is a sequence whose main diagonal in the difference table is A000004 = 0's.
This is the case for a(n).
Difference table of a(n):
0, 2, 2, 3, 4, 5, ...
2, 0, 1, 1, 1, 1, ...
-2, 1, 0, 0, 0, 0, ...
3, -1, 0, 0, 0, 0, ...
-4, 1, 0, 0, 0, 0, ...
5, -1, 0, 0, 0, 0, ...
etc.
The inverse binomial transform of a(n) is (-1)^(n+1)*a(n).
0 followed by A000012(n) is not in the OEIS. See A054977.
What is the meaning of a(n)?
Among many others, A015441 is an autosequence of the first kind.
General form for such autosequence.
Starting from the first upper diagonal s0, s1, s2, s3, s4, ...,
the autosequence is
0, s0, s0, s0 + s1, s0 + 2*s1, s0 + 3*s1 + s2, s0 + 4*s1 + 3*s2, ... .
After 0, the corresponding coefficients are A011973(n).

Examples

			G.f. = 2*x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2*x-2*x^2+x^3)/(1-x)^2)); // G. C. Greubel, Aug 03 2018
  • Mathematica
    CoefficientList[Series[(2*x-2*x^2+x^3)/(1-x)^2, {x, 0, 60}], x] (* G. C. Greubel, Aug 03 2018 *)
    a[ n_] := n + Boole[n == 1]; (* Michael Somos, Aug 19 2018 *)
    Join[{0,2},Range[2,70]] (* Harvey P. Dale, Oct 10 2024 *)
  • PARI
    {a(n) = n + (n==1)}; /* Michael Somos, Feb 09 2015 */
    

Formula

a(n) = (A164558(n) + (-1)^(n+1)*A164555(n))/A027642(n).
a(n) = A063524(n) + A001477(n). - David A. Corneth, Aug 03 2018
G.f.: (2*x - 2*x^2 + x^3) / (1 - x)^2. - Michael Somos, Feb 09 2015
Showing 1-10 of 11 results. Next