cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A242779 The continued fractions of A233588.

Original entry on oeis.org

2, 1, 1, 3, 3, 1, 8, 3, 1, 1, 2, 2, 3, 2, 2, 4, 3, 1, 3, 1, 3, 11, 2, 4, 8, 25, 49, 14, 5, 1, 1, 1, 271, 1, 3, 4, 9, 1, 5, 14, 3, 1, 1, 1, 1, 47, 1, 21, 1, 7, 4, 1, 2, 1, 3, 2, 11, 3, 8, 1, 2, 1, 1, 4, 3, 1, 3, 2, 17, 1, 1, 3, 84, 4, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 4, 7, 2, 2, 2, 1, 12, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 14
Offset: 0

Views

Author

Robert G. Wilson v, May 22 2014

Keywords

Comments

Records: 1, 3, 8, 11, 25, 49, 271, 758, 1094, 1503, 3776, 7139, 9420, 25738, 50521, 116216, 750706, 1034104, 36949654, ..., .

Crossrefs

Cf. A233588.

Programs

  • Mathematica
    ContinuedFraction@ Fold[(#2 + #2/#1) &, 1, Reverse@ Prime@ Range@ 100]

A242946 Palindromes of length greater than 1 in decimal expansion of Blazys's constant (A233588).

Original entry on oeis.org

5665, 66, 383, 171, 88, 888, 88, 44, 444, 44, 33, 22, 575, 282, 828, 464, 969, 33, 525, 66, 99, 989, 40, 0, 22, 88, 5665, 66, 3003, 0, 383, 8338, 33, 62526, 252, 55, 808, 585, 33, 99, 545, 77, 44, 0, 11, 44, 282, 696, 99, 44, 444, 44, 646, 919, 212, 0, 99, 44, 444, 44, 353, 535, 595, 252, 22
Offset: 1

Views

Author

Robert G. Wilson v, May 27 2014

Keywords

Comments

Begin with the left (most significant) k digits and sequentially remove the first j leading digits until a palindrome is found; continue.
a(23) is actually 040 (which should be obvious), a(24) is 00, a(30) is 00, a(44) is 00, a(56) is 00, etc.
If the Blazys's constant is a normal number then all palindromes should eventually appear.

Examples

			Blazys's constant is 2.566543832171388844467529106332285751782972828702314645...
		

Crossrefs

Programs

  • Mathematica
    bc = RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ Prime@ Range@ 1000], 10, 1000][[1]]; palQ[n_] := n == Reverse[n]; k = 1; lst = {}; While[j = k + 1; k < 600, While[j < 600 - k, If[ palQ[ Take[ bc, {k, j}]], p = FromDigits[ Take[ bc, {k, j}]]; AppendTo[lst, p]; Print[p]]; j++]; k++]; lst

A000040 The prime numbers.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Keywords

Comments

See A065091 for comments, formulas etc. concerning only odd primes. For all information concerning prime powers, see A000961. For contributions concerning "almost primes" see A002808.
A number p is prime if (and only if) it is greater than 1 and has no positive divisors except 1 and p.
A natural number is prime if and only if it has exactly two (positive) divisors.
A prime has exactly one proper positive divisor, 1.
The paper by Kaoru Motose starts as follows: "Let q be a prime divisor of a Mersenne number 2^p-1 where p is prime. Then p is the order of 2 (mod q). Thus p is a divisor of q - 1 and q > p. This shows that there exist infinitely many prime numbers." - Pieter Moree, Oct 14 2004
1 is not a prime, for if the primes included 1, then the factorization of a natural number n into a product of primes would not be unique, since n = n*1.
Prime(n) and pi(n) are inverse functions: A000720(a(n)) = n and a(n) is the least number m such that a(A000720(m)) = a(n). a(A000720(n)) = n if (and only if) n is prime.
Second sequence ever computed by electronic computer, on EDSAC, May 09 1949 (see Renwick link). - Russ Cox, Apr 20 2006
Every prime p > 3 is a linear combination of previous primes prime(n) with nonzero coefficients c(n) and |c(n)| < prime(n). - Amarnath Murthy, Franklin T. Adams-Watters and Joshua Zucker, May 17 2006; clarified by Chayim Lowen, Jul 17 2015
The Greek transliteration of 'Prime Number' is 'Protos Arithmos'. - Daniel Forgues, May 08 2009 [Edited by Petros Hadjicostas, Nov 18 2019]
A number n is prime if and only if it is different from zero and different from a unit and each multiple of n decomposes into factors such that n divides at least one of the factors. This applies equally to the integers (where a prime has exactly four divisors (the definition of divisors is relaxed such that they can be negative)) and the positive integers (where a prime has exactly two distinct divisors). - Peter Luschny, Oct 09 2012
Motivated by his conjecture on representations of integers by alternating sums of consecutive primes, for any positive integer n, Zhi-Wei Sun conjectured that the polynomial P_n(x) = Sum_{k=0..n} a(k+1)*x^k is irreducible over the field of rational numbers with the Galois group S_n, and moreover P_n(x) is irreducible mod a(m) for some m <= n(n+1)/2. It seems that no known criterion on irreducibility of polynomials implies this conjecture. - Zhi-Wei Sun, Mar 23 2013
Questions on a(2n) and Ramanujan primes are in A233739. - Jonathan Sondow, Dec 16 2013
From Hieronymus Fischer, Apr 02 2014: (Start)
Natural numbers such that there is exactly one base b such that the base-b alternate digital sum is 0 (see A239707).
Equivalently: Numbers p > 1 such that b = p-1 is the only base >= 1 for which the base-b alternate digital sum is 0.
Equivalently: Numbers p > 1 such that the base-b alternate digital sum is <> 0 for all bases 1 <= b < p-1. (End)
An integer n > 1 is a prime if and only if it is not the sum of positive integers in arithmetic progression with common difference 2. - Jean-Christophe Hervé, Jun 01 2014
Conjecture: Numbers having prime factors <= prime(n+1) are {k|k^f(n) mod primorial(n)=1}, where f(n) = lcm(prime(i)-1, i=1..n) = A058254(n) and primorial(n) = A002110(n). For example, numbers with no prime divisor <= prime(7) = 17 are {k|k^60 mod 30030=1}. - Gary Detlefs, Jun 07 2014
Cramer conjecture prime(n+1) - prime(n) < C log^2 prime(n) is equivalent to the inequality (log prime(n+1)/log prime(n))^n < e^C, as n tend to infinity, where C is an absolute constant. - Thomas Ordowski, Oct 06 2014
I conjecture that for any positive rational number r there are finitely many primes q_1,...,q_k such that r = Sum_{j=1..k} 1/(q_j-1). For example, 2 = 1/(2-1) + 1/(3-1) + 1/(5-1) + 1/(7-1) + 1/(13-1) with 2, 3, 5, 7 and 13 all prime, 1/7 = 1/(13-1) + 1/(29-1) + 1/(43-1) with 13, 29 and 43 all prime, and 5/7 = 1/(3-1) + 1/(7-1) + 1/(31-1) + 1/(71-1) with 3, 7, 31 and 71 all prime. - Zhi-Wei Sun, Sep 09 2015
I also conjecture that for any positive rational number r there are finitely many primes p_1,...,p_k such that r = Sum_{j=1..k} 1/(p_j+1). For example, 1 = 1/(2+1) + 1/(3+1) + 1/(5+1) + 1/(7+1) + 1/(11+1) + 1/(23+1) with 2, 3, 5, 7, 11 and 23 all prime, and 10/11 = 1/(2+1) + 1/(3+1) + 1/(5+1) + 1/(7+1) + 1/(43+1) + 1/(131+1) + 1/(263+1) with 2, 3, 5, 7, 43, 131 and 263 all prime. - Zhi-Wei Sun, Sep 13 2015
Numbers k such that ((k-2)!!)^2 == +-1 (mod k). - Thomas Ordowski, Aug 27 2016
Does not satisfy Benford's law [Diaconis, 1977; Cohen-Katz, 1984; Berger-Hill, 2017]. - N. J. A. Sloane, Feb 07 2017
Prime numbers are the integer roots of 1 - sin(Pi*Gamma(s)/s)/sin(Pi/s). - Peter Luschny, Feb 23 2018
Conjecture: log log a(n+1) - log log a(n) < 1/n. - Thomas Ordowski, Feb 17 2023

Examples

			From _David A. Corneth_, Oct 22 2024: (Start)
7 is a prime number as it has exactly two divisors, 1 and 7.
8 is not a prime number as it does not have exactly two divisors (it has 1, 2, 4 and 8 as divisors though it is sufficient to find one other divisor than 1 and 8)
55 is not a prime number as it does not have exactly two divisors. One other divisor than 1 and 55 is 5.
59 is a prime number as it has exactly two divisors; 1 and 59. (End)
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 2nd. ed., 2001; see p. 3.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I, Chaps. 8, 9.
  • D. M. Bressoud, Factorization and Primality Testing, Springer-Verlag NY 1989.
  • M. Cipolla, "La determinazione asintotica dell'n-mo numero primo.", Rend. d. R. Acc. di sc. fis. e mat. di Napoli, s. 3, VIII (1902), pp. 132-166.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 127-149.
  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 1.
  • Martin Davis, "Algorithms, Equations, and Logic", pp. 4-15 of S. Barry Cooper and Andrew Hodges, Eds., "The Once and Future Turing: Computing the World", Cambridge 2016.
  • J.-P. Delahaye, Merveilleux nombres premiers, Pour la Science-Belin Paris, 2000.
  • J.-P. Delahaye, Savoir si un nombre est premier: facile, Pour La Science, 303(1) 2003, pp. 98-102.
  • M. Dietzfelbinger, Primality Testing in Polynomial Time, Springer NY 2004.
  • M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 5.
  • J. Elie, "L'algorithme AKS", in 'Quadrature', No. 60, pp. 22-32, 2006 EDP-sciences, Les Ulis (France);
  • W. & F. Ellison, Prime Numbers, Hermann Paris 1985
  • T. Estermann, Introduction to Modern Prime Number Theory, Camb. Univ. Press, 1969.
  • J. M. Gandhi, Formulae for the nth prime. Proc. Washington State Univ. Conf. on Number Theory, 96-106. Wash. St. Univ., Pullman, Wash., 1971.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, pp. 77-78.
  • R. K. Guy, Unsolved Problems Number Theory, Section A.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, pp. (260-264).
  • H. D. Huskey, Derrick Henry Lehmer [1905-1991]. IEEE Ann. Hist. Comput. 17 (1995), no. 2, 64-68. Math. Rev. 96b:01035, cf. http://www.ams.org/mathscinet-getitem?mr=1336709
  • M. N. Huxley, The Distribution of Prime Numbers, Oxford Univ. Press, 1972.
  • D. S. Jandu, Prime Numbers And Factorization, Infinite Bandwidth Publishing, N. Hollywood CA 2007.
  • E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea, NY, 1974.
  • D. H. Lehmer, The sieve problem for all-purpose computers. Math. Tables and Other Aids to Computation, Math. Tables and Other Aids to Computation, 7, (1953). 6-14. Math. Rev. 14:691e
  • D. N. Lehmer, "List of Prime Numbers from 1 to 10,006,721", Carnegie Institute, Washington, D.C. 1909.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, Chap. 6.
  • H. Lifchitz, Table des nombres premiers de 0 à 20 millions (Tomes I & II), Albert Blanchard, Paris 1971.
  • R. F. Lukes, C. D. Patterson and H. C. Williams, Numerical sieving devices: their history and some applications. Nieuw Arch. Wisk. (4) 13 (1995), no. 1, 113-139. Math. Rev. 96m:11082, cf http://www.ams.org/mathscinet-getitem?mr=96m:11082
  • P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag NY 1995.
  • P. Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004.
  • H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser Boston, Cambridge MA 1994.
  • B. Rittaud, "31415879. Ce nombre est-il premier?" ['Is this number prime?'], La Recherche, Vol. 361, pp. 70-73, Feb 15 2003, Paris.
  • D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, Chap. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 107-119.
  • D. Wells, Prime Numbers: The Most Mysterious Figures In Math, J. Wiley NY 2005.
  • H. C. Williams and Jeffrey Shallit, Factoring integers before computers. Mathematics of Computation 1943-1993: a half-century of computational mathematics (Vancouver, BC, 1993), 481-531, Proc. Sympos. Appl. Math., 48, AMS, Providence, RI, 1994. Math. Rev. 95m:11143

Crossrefs

For is_prime and next_prime, see A010051 and A151800.
Cf. A000720 ("pi"), A001223 (differences between primes), A002476, A002808, A003627, A006879, A006880, A008578, A080339, A233588.
Cf. primes in lexicographic order: A210757, A210758, A210759, A210760, A210761.
Cf. A003558, A179480 (relating to the Quasi-order theorem of Hilton and Pedersen).
Boustrophedon transforms: A000747, A000732, A230953.
a(2n) = A104272(n) - A233739(n).
Related sequences:
Primes (p) and composites (c): A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • GAP
    A000040:=Filtered([1..10^5],IsPrime); # Muniru A Asiru, Sep 04 2017
    
  • Haskell
    -- See also Haskell Wiki Link.
    import Data.List (genericIndex)
    a000040 n = genericIndex a000040_list (n - 1)
    a000040_list = base ++ larger where
    base = [2,3,5,7,11,13,17]
    larger = p : filter prime more
    prime n = all ((> 0) . mod n) $ takeWhile (\x -> x*x <= n) larger
    _ : p : more = roll $ makeWheels base
    roll (Wheel n rs) = [n * k + r | k <- [0..], r <- rs]
    makeWheels = foldl nextSize (Wheel 1 [1])
    nextSize (Wheel size bs) p = Wheel (size * p)
    [r | k <- [0..p-1], b <- bs, let r = size*k+b, mod r p > 0]
    data Wheel = Wheel Integer [Integer]
    -- Reinhard Zumkeller, Apr 07 2014
    
  • Magma
    [n : n in [2..500] | IsPrime(n)];
    
  • Magma
    a := func< n | NthPrime(n) >;
    
  • Maple
    A000040 := n->ithprime(n); [ seq(ithprime(i),i=1..100) ];
    # For illustration purposes only:
    isPrime := s -> is(1 = sin(Pi*GAMMA(s)/s)/sin(Pi/s)):
    select(isPrime, [$2..100]); # Peter Luschny, Feb 23 2018
  • Mathematica
    Prime[Range[60]]
  • Maxima
    A000040(n) := block(
    if n = 1 then return(2),
    return( next_prime(A000040(n-1)))
    )$ /* recursive, to be replaced if possible - R. J. Mathar, Feb 27 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, prime(n))};
    
  • PARI
    /* The following functions provide asymptotic approximations, one based on the asymptotic formula cited above (slight overestimate for n > 10^8), the other one based on pi(x) ~ li(x) = Ei(log(x)) (slight underestimate): */
    prime1(n)=n*(log(n)+log(log(n))-1+(log(log(n))-2)/log(n)-((log(log(n))-6)*log(log(n))+11)/log(n)^2/2)
    prime2(n)=solve(X=n*log(n)/2,2*n*log(n),real(eint1(-log(X)))+n)
    \\ M. F. Hasler, Oct 21 2013
    
  • PARI
    forprime(p=2, 10^3, print1(p, ", ")) \\ Felix Fröhlich, Jun 30 2014
    
  • PARI
    primes(10^5) \\ Altug Alkan, Mar 26 2018
    
  • Python
    from sympy import primerange
    print(list(primerange(2, 272))) # Michael S. Branicky, Apr 30 2022
  • Sage
    a = sloane.A000040
    a.list(58)  # Jaap Spies, 2007
    
  • Sage
    prime_range(1, 300)  # Zerinvary Lajos, May 27 2009
    

Formula

The prime number theorem is the statement that a(n) ~ n * log n as n -> infinity (Hardy and Wright, page 10).
For n >= 2, n*(log n + log log n - 3/2) < a(n); for n >= 20, a(n) < n*(log n + log log n - 1/2). [Rosser and Schoenfeld]
For all n, a(n) > n log n. [Rosser]
n log(n) + n (log log n - 1) < a(n) < n log n + n log log n for n >= 6. [Dusart, quoted in the Wikipedia article]
a(n) = n log n + n log log n + (n/log n)*(log log n - log n - 2) + O( n (log log n)^2/ (log n)^2). [Cipolla, see also Cesàro or the "Prime number theorem" Wikipedia article for more terms in the expansion]
a(n) = 2 + Sum_{k = 2..floor(2n*log(n)+2)} (1-floor(pi(k)/n)), for n > 1, where the formula for pi(k) is given in A000720 (Ruiz and Sondow 2002). - Jonathan Sondow, Mar 06 2004
I conjecture that Sum_{i>=1} (1/(prime(i)*log(prime(i)))) = Pi/2 = 1.570796327...; Sum_{i=1..100000} (1/(prime(i)*log(prime(i)))) = 1.565585514... It converges very slowly. - Miklos Kristof, Feb 12 2007
The last conjecture has been discussed by the math.research newsgroup recently. The sum, which is greater than Pi/2, is shown in sequence A137245. - T. D. Noe, Jan 13 2009
A000005(a(n)) = 2; A002033(a(n+1)) = 1. - Juri-Stepan Gerasimov, Oct 17 2009
A001222(a(n)) = 1. - Juri-Stepan Gerasimov, Nov 10 2009
From Gary Detlefs, Sep 10 2010: (Start)
Conjecture:
a(n) = {n| n! mod n^2 = n(n-1)}, n <> 4.
a(n) = {n| n!*h(n) mod n = n-1}, n <> 4, where h(n) = Sum_{k=1..n} 1/k. (End)
For n = 1..15, a(n) = p + abs(p-3/2) + 1/2, where p = m + int((m-3)/2), and m = n + int((n-2)/8) + int((n-4)/8). - Timothy Hopper, Oct 23 2010
a(2n) <= A104272(n) - 2 for n > 1, and a(2n) ~ A104272(n) as n -> infinity. - Jonathan Sondow, Dec 16 2013
Conjecture: Sequence = {5 and n <> 5| ( Fibonacci(n) mod n = 1 or Fibonacci(n) mod n = n - 1) and 2^(n-1) mod n = 1}. - Gary Detlefs, May 25 2014
Conjecture: Sequence = {5 and n <> 5| ( Fibonacci(n) mod n = 1 or Fibonacci(n) mod n = n - 1) and 2^(3*n) mod 3*n = 8}. - Gary Detlefs, May 28 2014
Satisfies a(n) = 2*n + Sum_{k=1..(a(n)-1)} cot(k*Pi/a(n))*sin(2*k*n^a(n)*Pi/a(n)). - Ilya Gutkovskiy, Jun 29 2016
Sum_{n>=1} 1/a(n)^s = P(s), where P(s) is the prime zeta function. - Eric W. Weisstein, Nov 08 2016
a(n) = floor(1 - log(-1/2 + Sum_{ d | A002110(n-1) } mu(d)/(2^d-1))/log(2)) where mu(d) = A008683(d) [Ghandi, 1971] (see Ribenboim). Golomb gave a proof in 1974: Give each positive integer a probability of W(n) = 1/2^n, then the probability M(d) of the integer multiple of number d equals 1/(2^d-1). Suppose Q = a(1)*a(2)*...*a(n-1) = A002110(n-1), then the probability of random integers that are mutually prime with Q is Sum_{ d | Q } mu(d)*M(d) = Sum_{ d | Q } mu(d)/(2^d-1) = Sum_{ gcd(m, Q) = 1 } W(m) = 1/2 + 1/2^a(n) + 1/2^a(n+1) + 1/2^a(n+2) + ... So ((Sum_{ d | Q } mu(d)/(2^d-1)) - 1/2)*2^a(n) = 1 + x(n), which means that a(n) is the only integer so that 1 < ((Sum_{ d | Q } mu(d)/(2^d-1)) - 1/2)*2^a(n) < 2. - Jinyuan Wang, Apr 08 2019
Conjecture: n * (log(n)+log(log(n))-1+((log(log(n))-A)/log(n))) is asymptotic to a(n) if and only if A=2. - Alain Rocchelli, Feb 12 2025
From Stefano Spezia, Apr 13 2025: (Start)
a(n) = 1 + Sum_{m=1..2^n} floor(floor(n/Sum_{j=1..m} A080339(j))^(1/n)) [Willans, 1964].
a(n) = 1 + Sum_{m=1..2^n} floor(floor(n/(1 + A000720(m)))^(1/n)) [Willans, 1964]. (End)

A233582 Coefficients of the generalized continued fraction expansion Pi = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

3, 21, 111, 113, 158, 160, 211, 216, 525, 1634, 1721, 7063, 8771, 15077, 26168, 58447, 223767, 254729, 587278, 1046086, 1491449, 1635223, 1689171, 2039096, 2290214, 13444599, 22666443, 1276179737, 4470200748
Offset: 1

Views

Author

Stanislav Sykora, Jan 02 2014

Keywords

Comments

Definition of "Blazys" generalized continued fraction expansion of an irrational real number x>1:
Set n=1,r=x; (ii) set a(n)=floor(r); (iii) set r=a(n)/(r-a(n)); (iv) increment n and iterate from point (ii).
For the inverse of this mapping, see A233588.

Crossrefs

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Pi, 33] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x,nmax)={local(c,v,k);
    v = vector(nmax);c = x;for(k=1,nmax,v[k] = floor(c);c = v[k]/(c-v[k]););return (v);}
    bx(Pi,1000) \\ Execution; use very high real precision

Formula

Pi = 3+3/(21+21/(111+111/(113+113/(158+...)))).

A233583 Coefficients of the generalized continued fraction expansion e = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details on Blazys' expansion, see A233582.
This sequence matches that of natural numbers (A000027), offset by 1, with two different starting terms.

Crossrefs

Cf. A000027 (natural numbers), A001113 (number e).
Cf. Blazys' expansions: A233582 (Pi), A233584, A233585, A233586, A233587 and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[E, 80] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    default(realprecision,100);
    bx(x,nmax)={local(c,v,k); \\ Blazys expansion function
    v = vector(nmax);c = x;for(k=1,nmax,v[k] = floor(c);c = v[k]/(c-v[k]););return (v);}
    bx(exp(1),100) \\ Execution; use high real precision

Formula

e = 2+2/(2+2/(2+2/(3+3/(4+4/(5+...))))).

A233584 Coefficients of the generalized continued fraction expansion sqrt(e) = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

1, 1, 1, 1, 5, 9, 17, 109, 260, 2909, 3072, 3310, 3678, 6715, 35175, 37269, 439792, 1400459, 1472451, 4643918, 5683171, 44850176, 62252861, 145631385, 154435765, 371056666, 1685980637, 11196453405, 14795372939
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details on Blazys' expansions, see A233582.
Compared with simple continued fraction expansion for sqrt(e), this sequence starts soon growing very rapidly.

Crossrefs

Cf. A019774 (sqrt(e)), A058281 (simple continued fraction).
Cf. Blazys' expansions: A233582 (Pi), A233583, A233585, A233586, A233587 and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Sqrt@E, 35] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(exp(1/2), 100) \\ Execution; use high real precision

Formula

sqrt(e) = 1+1/(1+1/(1+1/(1+1/(5+5/(9+9/(17+17/(109+...))))))).

A233585 Coefficients of the generalized continued fraction expansion of the inverse of Euler constant, 1/gamma = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 4, 12, 39, 71, 83, 484, 1028, 1447, 9913, 31542, 526880, 685669, 1396494, 1534902, 2295194, 9521643, 9643315, 42421746, 183962859, 553915624, 557976754, 6111180351, 10671513549, 61650520975, 106532505646
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Crossrefs

Cf. A233582.
Cf. A001620 (gamma).
Cf. Blazys's expansions: A233582 (Pi), A233583(e), A233584 (sqrt(e)), A233586 (2*gamma), A233587 and Blazys's continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[1/EulerGamma, 35] (* Robert G. Wilson v, May 22 2014 *)
    BlazysExpansion[n_, mx_] := Reap[Nest[(1/(#/Sow[Floor[#]] - 1)) &, n, mx];][[-1, 1]]; BlazysExpansion[1/EulerGamma, 35] (* Jan Mangaldan, Jan 04 2017 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(1/Euler, 670) \\ Execution; use very high real precision

Formula

1/gamma = 1+1/(1+1/(2+2/(2+2/(2+2/(2+2/(4+4/(12+...))))))).

A233587 Coefficients of the generalized continued fraction expansion sqrt(7) = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

2, 3, 30, 34, 111, 235, 3775, 5052, 7352, 9091, 34991, 35530, 53424, 57290, 66023, 1409179, 1519111, 1725990, 1812396, 4370835, 4507156, 4655396, 44257080, 234755198, 261519946, 264374278, 273487975
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details on Blazys' expansions, see A233582.
Sqrt(7) is the first square root of a natural number with an a-periodic Blazys' expansion (see A233592 and A233593).

Crossrefs

Cf. Blazys' expansions: A233582 (Pi), A233583 (e), A233584 (sqrt(e)), A233585 (1/gamma), A233585 (2*gamma) and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Sqrt@7, 32] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(sqrt(7), 1000) \\ Execution; use very high real precision

Formula

sqrt(7) = 2+2/(3+3/(30+30/(34+34/(111+...)))).

A233586 Coefficients of the generalized continued fraction expansion of twice the Euler constant, 2*gamma = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

1, 6, 12, 19, 63, 263, 856, 2632, 7714, 9683, 888970, 1200867, 1691244, 2350415, 3433770, 4482812, 17544235, 48509602, 53801529, 114221223, 124712727, 997393454, 16681741997, 17954856574, 105651203040
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details on Blazys' expansions, see A233582.

Crossrefs

Cf. A001620 (gamma).
Cf. Blazys' expansions: A233582 (Pi), A233583 (e), A233584 (sqrt(e)), A233585 (1/gamma), A233587 and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[2 EulerGamma, 29] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(2*Euler, 670) \\ Execution; use very high real precision

Formula

2*gamma = 1+1/(6+6/(12+12/(19+19/(63+63/(263+...))))).

A233589 Decimal expansion of the continued fraction c(1) +c(1)/(c(2) +c(2)/(c(3) +c(3)/(c(4) +c(4)/....))), where c(i)=(i-1)!.

Original entry on oeis.org

1, 6, 9, 8, 8, 0, 4, 7, 6, 7, 6, 7, 0, 0, 0, 7, 2, 1, 1, 9, 5, 2, 6, 9, 0, 1, 1, 5, 9, 1, 4, 6, 4, 0, 4, 3, 2, 5, 5, 9, 7, 3, 0, 9, 3, 6, 6, 4, 9, 8, 3, 9, 6, 9, 7, 8, 1, 7, 4, 1, 9, 1, 7, 4, 2, 6, 8, 9, 2, 0, 0, 0
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Examples

			1.69880476767000721195269011591464043255973093664983969781741917426892...
		

Crossrefs

Cf. A233588.
Cf. A000142 (factorials), A006882 (double factorials).
Cf. Blazys' continued fractions: A233588, A233590, A233591 and Blazys' expansions: A233582, A233583, A233584, A233585, A233586, A233587.

Programs

  • Mathematica
    RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ Range[0, 18]!], 10, 111][[1]] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    See the link.

Formula

Equals 0!+0!/(1!+1!/(2!+2!/(3!+3!/(4!+...)))).
Equals simple continued fraction [0!!; 1!!, 2!!, 3!!, ..., n!!, ...] where the double factorial n!! = A006882(n). - Thomas Ordowski, Oct 21 2024
Showing 1-10 of 13 results. Next