cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A238424 Number of partitions of n without three consecutive parts in arithmetic progression.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 8, 13, 13, 19, 24, 30, 36, 47, 54, 72, 85, 106, 123, 151, 178, 220, 256, 314, 362, 432, 505, 605, 692, 827, 953, 1121, 1303, 1522, 1729, 2037, 2321, 2691, 3095, 3577, 4061, 4699, 5334, 6126, 6959, 7966, 9005, 10317, 11638, 13252, 14977
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 26 2014

Keywords

Comments

Also the number of partitions of n whose first differences are an anti-run, meaning there are no adjacent equal differences. - Gus Wiseman, Mar 31 2020

Examples

			The a(8) = 13 such partitions are:
01:  [ 3 2 2 1 ]
02:  [ 3 3 1 1 ]
03:  [ 3 3 2 ]
04:  [ 4 2 1 1 ]
05:  [ 4 2 2 ]
06:  [ 4 3 1 ]
07:  [ 4 4 ]
08:  [ 5 2 1 ]
09:  [ 5 3 ]
10:  [ 6 1 1 ]
11:  [ 6 2 ]
12:  [ 7 1 ]
13:  [ 8 ]
		

Crossrefs

Cf. A238433 (partitions avoiding equidistant arithmetic progressions).
Cf. A238571 (partitions avoiding any arithmetic progression).
Cf. A238687.
The version for compositions is A238423, with strict case A325849.
The version for permutations is A295370.
The strict case is A332668.
The Heinz numbers of these partitions are the complement of A333195.
Partitions with equal differences are A049988.

Programs

  • Mathematica
    a[n_,r_,d_] := a[n,r,d] = Block[{j}, If[n == 0, 1, Sum[If[j == r+d, 0, a[n-j, j, j - r]], {j, Min[n, r]}]]]; a[n_] := a[n, 2*n+1, 0]; a /@ Range[0, 100] (* Giovanni Resta, Mar 02 2014 *)
    Table[Length[Select[IntegerPartitions[n],!MemberQ[Differences[#,2],0]&]],{n,0,30}] (* Gus Wiseman, Mar 31 2020 *)

A054519 Number of increasing arithmetic progressions of nonnegative integers ending in n, including those of length 1 or 2.

Original entry on oeis.org

1, 2, 4, 6, 9, 11, 15, 17, 21, 24, 28, 30, 36, 38, 42, 46, 51, 53, 59, 61, 67, 71, 75, 77, 85, 88, 92, 96, 102, 104, 112, 114, 120, 124, 128, 132, 141, 143, 147, 151, 159, 161, 169, 171, 177, 183, 187, 189, 199, 202, 208, 212, 218, 220, 228, 232, 240, 244, 248
Offset: 0

Views

Author

Henry Bottomley, Apr 07 2000

Keywords

Comments

a(0)=1, a(n) = a(n-1) + sigma_0(n) (A000005). - Ctibor O. Zizka, Nov 08 2008
a(n) is the index of the n-th term of A027750 whose value is 1. - Michel Marcus, Oct 15 2015
From Gus Wiseman, Jun 07 2019: (Start)
Also the number of subsets of {1..n} that are closed under taking the difference of two strictly decreasing terms. For example, the a(0) = 1 through a(6) = 15 subsets are:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{1,2} {3} {3} {3} {3}
{1,2} {4} {4} {4}
{1,2,3} {1,2} {5} {5}
{2,4} {1,2} {6}
{1,2,3} {2,4} {1,2}
{1,2,3,4} {1,2,3} {2,4}
{1,2,3,4} {3,6}
{1,2,3,4,5} {1,2,3}
{2,4,6}
{1,2,3,4}
{1,2,3,4,5}
{1,2,3,4,5,6}
(End)

Examples

			a(3)=6 because the six increasing progressions (3), (2,3), (1,2,3), (0,1,2,3), (1,3) and (0,3) all end in 3.
		

Crossrefs

Programs

  • Magma
    [1] cat [&+[Ceiling((k+1)/(i+1)): i in [1..k+1]]: k in [1..60]]; // Marius A. Burtea, Jun 10 2019
  • Maple
    IBI:= {{}}: a[0]:= 1: for n from 1 to 45 do IBI:= IBI union map(t -> t union {n}, select(t -> (t minus map(q -> n-q, t)={}), IBI)); a[n]:= nops(IBI) od: seq(a[n], n=0..45); # Zerinvary Lajos, Mar 18 2007
    with(numtheory):a[1]:=2: for n from 2 to 59 do a[n]:=a[n-1]+tau(n) od: seq(a[n], n=0..45); # Zerinvary Lajos, Mar 21 2009
    map(`+`, ListTools:-PartialSums(map(numtheory:-tau, [$0..1000])),1); # Robert Israel, Oct 15 2015
  • Mathematica
    a[0]=1; a[n_] := a[n] = a[n-1] + DivisorSigma[0, n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Oct 05 2012, after Ctibor O. Zizka *)
    nxt[{n_,a_}]:={n+1,a+DivisorSigma[0,n+1]}; Transpose[NestList[nxt,{0,1},50]][[2]] (* Harvey P. Dale, Oct 15 2012 *)
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Subtract@@@Reverse/@Subsets[#,{2}]]&]],{n,0,10}] (* Gus Wiseman, Jun 07 2019 *)
  • PARI
    vector(100, n, n--; sum(k=1, n, n\k) + 1) \\ Altug Alkan, Oct 15 2015
    

Formula

a(n) = A051336(n+1) - A051336(n) = a(n-1) + A000005(n) = A006218(n)+1.
G.f.: (1-x)^(-1) * (1 + Sum_{j>=1} x^j/(1-x^j)). - Robert Israel, Oct 15 2015
a(n) = Sum_{i=1..n+1} ceiling((n+1)/(i+1)). - Wesley Ivan Hurt, Sep 15 2017

A295370 Number of permutations of [n] avoiding three consecutive terms in arithmetic progression.

Original entry on oeis.org

1, 1, 2, 4, 18, 80, 482, 3280, 26244, 231148, 2320130, 25238348, 302834694, 3909539452, 54761642704, 816758411516, 13076340876500, 221396129723368, 3985720881222850, 75503196628737920, 1510373288335622576, 31634502738658957588, 696162960370556156224, 15978760340940405262668
Offset: 0

Views

Author

Alois P. Heinz, Nov 20 2017

Keywords

Comments

These are permutations of n whose second-differences are nonzero. - Gus Wiseman, Jun 03 2019

Examples

			a(3) = 4: 132, 213, 231, 312.
a(4) = 18: 1243, 1324, 1342, 1423, 2134, 2143, 2314, 2413, 2431, 3124, 3142, 3241, 3412, 3421, 4132, 4213, 4231, 4312.
		

Crossrefs

Programs

  • Maple
    b:= proc(s, j, k) option remember; `if`(s={}, 1,
          add(`if`(k=0 or 2*j<>i+k, b(s minus {i}, i,
              `if`(2*i-j in s, j, 0)), 0), i=s))
        end:
    a:= n-> b({$1..n}, 0$2):
    seq(a(n), n=0..12);
  • Mathematica
    Table[Length[Select[Permutations[Range[n]],!MemberQ[Differences[#,2],0]&]],{n,0,5}] (* Gus Wiseman, Jun 03 2019 *)
    b[s_, j_, k_] := b[s, j, k] = If[s == {}, 1, Sum[If[k == 0 || 2*j != i + k, b[s~Complement~{i}, i, If[MemberQ[s, 2*i - j ], j, 0]], 0], {i, s}]];
    a[n_] := a[n] = b[Range[n], 0, 0];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, Nov 20 2023, after Alois P. Heinz *)

Extensions

a(22)-a(23) from Vaclav Kotesovec, Mar 22 2022

A325874 Number of integer partitions of n whose differences of all degrees > 1 are nonzero.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 8, 12, 13, 19, 24, 26, 33, 45, 52, 66, 78, 92, 113, 129, 160, 192, 231, 268, 305, 361, 436, 501, 591, 665, 783, 897, 1071, 1228, 1361, 1593, 1834, 2101, 2452, 2685, 3129, 3526, 4067, 4568, 5189, 5868, 6655, 7565, 8468, 9400
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). The zeroth differences are the sequence itself, while k-th differences for k > 0 are the differences of the (k-1)-th differences. If m is the length of the sequence, its differences of all degrees are the union of the zeroth through m-th differences.
The case for all degrees including 1 is A325852.

Examples

			The a(1) = 1 through a(9) = 13 partitions:
  (1)  (2)   (3)   (4)    (5)    (6)     (7)    (8)     (9)
       (11)  (21)  (22)   (32)   (33)    (43)   (44)    (54)
                   (31)   (41)   (42)    (52)   (53)    (63)
                   (211)  (221)  (51)    (61)   (62)    (72)
                          (311)  (411)   (322)  (71)    (81)
                                 (2211)  (331)  (332)   (441)
                                         (421)  (422)   (522)
                                         (511)  (431)   (621)
                                                (521)   (711)
                                                (611)   (4221)
                                                (3221)  (4311)
                                                (3311)  (5211)
                                                        (32211)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[Union@@Table[Differences[#,i],{i,2,Length[#]}],0]&]],{n,0,30}]

A325849 Number of strict compositions of n with no three consecutive parts in arithmetic progression.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 13, 19, 23, 51, 57, 91, 117, 179, 283, 381, 531, 737, 1017, 1335, 2259, 2745, 3983, 5289, 7367, 9413, 13155, 19461, 25129, 33997, 45633, 61225, 80481, 107091, 137475, 205243, 253997, 345527, 447003, 604919, 768331, 1026167, 1299227
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n. a(n) is the number of strict compositions of n with no two of their adjacent first-differences equal, or with no 0's in their second-differences.

Examples

			The a(1) = 1 through a(8) = 19 compositions:
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)
            (12)  (13)  (14)  (15)   (16)   (17)
            (21)  (31)  (23)  (24)   (25)   (26)
                        (32)  (42)   (34)   (35)
                        (41)  (51)   (43)   (53)
                              (132)  (52)   (62)
                              (213)  (61)   (71)
                              (231)  (124)  (125)
                              (312)  (142)  (134)
                                     (214)  (143)
                                     (241)  (152)
                                     (412)  (215)
                                     (421)  (251)
                                            (314)
                                            (341)
                                            (413)
                                            (431)
                                            (512)
                                            (521)
		

Crossrefs

The non-strict case is A238423.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],!MemberQ[Differences[#,2],0]&]],{n,0,30}]

A325852 Number of (strict) integer partitions of n whose differences of all degrees are nonzero.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 11, 15, 19, 19, 26, 31, 31, 41, 49, 53, 62, 75, 81, 97, 112, 124, 145, 171, 175, 215, 244, 274, 307, 344, 388, 446, 497, 561, 599, 700, 779, 881, 981, 1054, 1184, 1340, 1500, 1669, 1767, 2031, 2237, 2486, 2765, 2946, 3300
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). The zeroth differences are the sequence itself, while k-th differences for k > 0 are the differences of the (k-1)-th differences. The differences of all degrees of a sequence are the union of its zeroth through m-th differences, where m is the length of the sequence.

Examples

			The a(1) = 1 through a(11) = 11 partitions (A = 10, B = 11):
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)   (64)   (65)
                        (41)  (51)  (52)   (62)   (63)   (73)   (74)
                                    (61)   (71)   (72)   (82)   (83)
                                    (421)  (431)  (81)   (91)   (92)
                                           (521)  (621)  (532)  (A1)
                                                         (541)  (542)
                                                         (631)  (632)
                                                         (721)  (641)
                                                                (731)
                                                                (821)
		

Crossrefs

The case for only degrees > 1 is A325874.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[Union@@Table[Differences[#,i],{i,Length[#]}],0]&]],{n,0,30}]

A325850 Number of permutations of {1..n} whose differences of all degrees are nonzero.

Original entry on oeis.org

1, 1, 2, 4, 18, 72, 446, 2804, 21560, 184364, 1788514
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). The zeroth differences are the sequence itself, while k-th differences for k > 0 are the differences of the (k-1)-th differences. The differences of all degrees of a sequence are the union of its zeroth through m-th differences, where m is the length of the sequence.

Examples

			The a(1) = 1 through a(4) = 18 permutations:
  (1)  (12)  (132)  (1243)
       (21)  (213)  (1324)
             (231)  (1342)
             (312)  (1423)
                    (2134)
                    (2143)
                    (2314)
                    (2413)
                    (2431)
                    (3124)
                    (3142)
                    (3241)
                    (3412)
                    (3421)
                    (4132)
                    (4213)
                    (4231)
                    (4312)
		

Crossrefs

Dominated by A295370, the case for only differences of degree 2.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],!MemberQ[Union@@Table[Differences[#,i],{i,Length[#]}],0]&]],{n,0,5}]

A325851 Number of (strict) compositions of n whose differences of all degrees are nonzero.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 12, 21, 35, 58, 102, 171, 284, 485, 819, 1355, 2301, 3884, 6528, 10983, 18380, 30824, 51851
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). The zeroth differences are the sequence itself, while k-th differences for k > 0 are the differences of the (k-1)-th differences. The differences of all degrees of a sequence are the union of its zeroth through m-th differences, where m is the length of the sequence.

Examples

			The a(1) = 1 through a(7) = 21 compositions:
  (1)  (2)  (3)   (4)    (5)    (6)     (7)
            (12)  (13)   (14)   (15)    (16)
            (21)  (31)   (23)   (24)    (25)
                  (121)  (32)   (42)    (34)
                         (41)   (51)    (43)
                         (131)  (132)   (52)
                         (212)  (141)   (61)
                                (213)   (124)
                                (231)   (142)
                                (312)   (151)
                                (1212)  (214)
                                (2121)  (232)
                                        (241)
                                        (313)
                                        (412)
                                        (421)
                                        (1213)
                                        (1312)
                                        (2131)
                                        (3121)
                                        (12121)
		

Crossrefs

The case for only degrees > 1 is A325875.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[Union@@Table[Differences[#,i],{i,Length[#]}],0]&]],{n,0,10}]

A325875 Number of compositions of n whose differences of all degrees > 1 are nonzero.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 20, 38, 69, 129, 222, 407, 726, 1313, 2318, 4146, 7432, 13296, 23759, 42458, 75714
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). The zeroth differences are the sequence itself, while k-th differences for k > 0 are the differences of the (k-1)-th differences. If m is the length of the sequence, its differences of all degrees are the union of the zeroth through m-th differences.
A composition of n is a finite sequence of positive integers with sum n.
The case for all degrees including 1 is A325851.

Examples

			The a(1) = 1 through a(6) = 20 compositions:
  (1)  (2)   (3)   (4)    (5)     (6)
       (11)  (12)  (13)   (14)    (15)
             (21)  (22)   (23)    (24)
                   (31)   (32)    (33)
                   (112)  (41)    (42)
                   (121)  (113)   (51)
                   (211)  (122)   (114)
                          (131)   (132)
                          (212)   (141)
                          (221)   (213)
                          (311)   (231)
                          (1121)  (312)
                          (1211)  (411)
                                  (1122)
                                  (1131)
                                  (1212)
                                  (1311)
                                  (2121)
                                  (2211)
                                  (11211)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[Union@@Table[Differences[#,i],{i,2,Length[#]}],0]&]],{n,0,10}]

A238569 Number of compositions of n avoiding any 3-term arithmetic progression.

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 19, 28, 53, 83, 140, 201, 332, 486, 775, 1207, 1716, 2498, 3870, 5623, 8020, 11276, 17168, 23323, 34746, 46141, 64879, 90467, 127971, 176201, 242869, 333508, 456683, 606403, 844818, 1125922, 1496466, 2005446, 2737912, 3543506, 4824442
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 28 2014

Keywords

Examples

			a(3) = 3: [1,2], [2,1], [3].
a(4) = 7: [1,1,2], [1,2,1], [1,3], [2,1,1], [2,2], [3,1], [4].
a(5) = 11: [1,1,3], [1,2,2], [1,3,1], [1,4], [2,1,2], [2,2,1], [2,3], [3,1,1], [3,2], [4,1], [5].
a(6) = 19: [1,1,2,2], [1,1,4], [1,2,1,2], [1,2,2,1], [1,3,2], [1,4,1], [1,5], [2,1,1,2], [2,1,2,1], [2,1,3], [2,2,1,1], [2,3,1], [2,4], [3,1,2], [3,3], [4,1,1], [4,2], [5,1], [6].
		

Crossrefs

Cf. A003407 (the same for permutations).
Cf. A178932 (the same for strict partitions).
Cf. A238423 (the same for consecutive 3-term arithmetic progressions).
Cf. A238571 (the same for partitions).
Cf. A238686.

Programs

  • Maple
    b:= proc(n, i, o) option remember; `if`(n=0, 1, add(
          `if`(j in o, 0, b(n-j, i union {j}, select(y->02*j-x, i)))), j=1..n))
        end:
    a:= n-> b(n, {}, {}):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_List, o_List] := b[n, i, o] = If[n == 0, 1, Sum[If[MemberQ[o, j], 0, b[n - j, i  ~Union~ {j}, Select[o ~Union~ (2j-i), 0<# && # <= n &]]], {j, 1, n}]]; a[n_] := b[n, {}, {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2015, translated from Maple *)
Showing 1-10 of 15 results. Next