1, 2, 3, 5, 7, 13, 17, 33, 45, 73, 103, 205, 253, 505, 733, 1133, 1529, 3057, 3897, 7793, 10241, 16513, 24593, 49185, 59265, 109297, 163369, 262489, 355729, 711457, 879937, 1759873, 2360641, 3908545, 5858113, 10534337, 12701537, 25403073, 38090337, 63299265, 81044097, 162088193, 205482593, 410965185, 570487233, 855676353
Offset: 0
a(4) = 7, the primitive subsequences (including the empty sequence) are: (), (1), (2), (3), (4), (2,3), (3,4).
a(5) = 13 = 2*7-1, the primitive subsequences are: (), (5), (1), (2), (2,5), (3), (3,5), (4), (4,5), (2,3), (2,3,5), (3,4), (3,4,5).
From _Gus Wiseman_, Jun 07 2019: (Start)
The a(0) = 1 through a(5) = 13 primitive (pairwise indivisible) subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{3} {3} {3}
{2,3} {4} {4}
{2,3} {5}
{3,4} {2,3}
{2,5}
{3,4}
{3,5}
{4,5}
{2,3,5}
{3,4,5}
a(n) is also the number of subsets of {1..n} containing all of their pairwise products <= n as well as any quotients of divisible elements. For example, the a(0) = 1 through a(5) = 13 subsets are:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{1,2} {1,2} {1,3} {1,3}
{1,3} {1,4} {1,4}
{1,2,3} {1,2,4} {1,5}
{1,3,4} {1,2,4}
{1,2,3,4} {1,3,4}
{1,3,5}
{1,4,5}
{1,2,3,4}
{1,2,4,5}
{1,3,4,5}
{1,2,3,4,5}
Also the number of subsets of {1..n} containing all of their multiples <= n. For example, the a(0) = 1 through a(5) = 13 subsets are:
{} {} {} {} {} {}
{1} {2} {2} {3} {3}
{1,2} {3} {4} {4}
{2,3} {2,4} {5}
{1,2,3} {3,4} {2,4}
{2,3,4} {3,4}
{1,2,3,4} {3,5}
{4,5}
{2,3,4}
{2,4,5}
{3,4,5}
{2,3,4,5}
{1,2,3,4,5}
(End)
From _Gus Wiseman_, Mar 12 2024: (Start)
Also the number of subsets of {1..n} containing all divisors of the elements. For example, the a(0) = 1 through a(6) = 17 subsets are:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{1,2} {1,2} {1,2} {1,2}
{1,3} {1,3} {1,3}
{1,2,3} {1,2,3} {1,5}
{1,2,4} {1,2,3}
{1,2,3,4} {1,2,4}
{1,2,5}
{1,3,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,2,3,4,5}
(End)
Comments