cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A056911 Odd squarefree numbers.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 145, 149, 151
Offset: 1

Views

Author

James Sellers, Jul 07 2000

Keywords

Comments

From Daniel Forgues, May 27 2009: (Start)
For any prime p, there are as many squarefree numbers having p as a factor as squarefree numbers not having p as a factor amongst all the squarefree numbers (one-to-one correspondence, both cardinality aleph_0).
E.g. there are as many even squarefree numbers as there are odd squarefree numbers.
For any prime p, the density of squarefree numbers having p as a factor is 1/p of the density of squarefree numbers not having p as a factor.
E.g. the density of even squarefree numbers is 1/p = 1/2 of the density of odd squarefree numbers (which means that 1/(p + 1) = 1/3 of the squarefree numbers are even and p/(p + 1) = 2/3 are odd). As a consequence the n-th even squarefree number is very nearly p = 2 times the n-th odd squarefree number (which means that the n-th even squarefree number is very nearly (p + 1) = 3 times the n-th squarefree number while the n-th odd squarefree number is very nearly (p + 1)/p = 3/2 the n-th squarefree number).
For any prime p, the n-th squarefree number not divisible by p is: n * (1 + 1/p) * zeta(2) + O(n^(1/2)) = n * (1 + 1/p) * (Pi^2 / 6) + O(n^(1/2)) (End)

Examples

			The exponents in the prime factorization of 15 are all equal to 1, so 15 appears here. The number 75 does not appear in this sequence, as it is divisible by the square number 25.
		

Crossrefs

Subsequence of A005117 and A036537.
Equals A039956/2.
Cf. A238711 (subsequence).

Programs

  • Haskell
    a056911 n = a056911_list !! (n-1)
    a056911_list = filter ((== 1) . a008966) [1,3..]
    -- Reinhard Zumkeller, Aug 27 2011
    
  • Magma
    [n: n in [1..151 by 2] | IsSquarefree(n)]; // Bruno Berselli, Mar 03 2011
    
  • Mathematica
    Select[Range[1,151,2],SquareFreeQ] (* Ant King, Mar 17 2013 *)
  • PARI
    is(n)=n%2 && issquarefree(n) \\ Charles R Greathouse IV, Mar 26 2013
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(k=1,lim\1, if(k[1]%2, listput(v,k[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2025

Formula

A123314(A100112(a(n))) > 0. - Reinhard Zumkeller, Sep 25 2006
a(n) = n * (3/2) * zeta(2) + O(n^(1/2)) = n * (Pi^2 / 4) + O(n^(1/2)). - Daniel Forgues, May 27 2009
A008474(a(n)) * A000035(a(n)) = 1. - Reinhard Zumkeller, Aug 27 2011
Sum_{n>=1} 1/a(n)^s = ((2^s)* zeta(s))/((1+2^s)*zeta(2*s)). - Enrique Pérez Herrero, Sep 15 2012 [corrected by Amiram Eldar, Sep 26 2023]

A035026 Number of times that i and 2n-i are both prime, for i = 1, ..., 2n-1.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 4, 4, 4, 5, 6, 5, 4, 6, 4, 7, 8, 3, 6, 8, 6, 7, 10, 8, 6, 10, 6, 7, 12, 5, 10, 12, 4, 10, 12, 9, 10, 14, 8, 9, 16, 9, 8, 18, 8, 9, 14, 6, 12, 16, 10, 11, 16, 12, 14, 20, 12, 11, 24, 7, 10, 20, 6, 14, 18, 11, 10, 16, 14, 15, 22, 11, 10, 24, 8, 16, 22, 9, 16, 20, 10
Offset: 1

Views

Author

Gordon R. Bower (siegmund(AT)mosquitonet.com)

Keywords

Comments

a(n) is the convolution of terms 1 to 2n of the characteristic function of the primes, A010051, with itself. Related to Goldbach's conjecture that every even number can be expressed as the sum of two primes. - T. D. Noe, Aug 01 2002
The following sequences all appear to have the same parity (with an extra zero term at the start of A010051): A010051, A061007, A035026, A069754, A071574. - Jeremy Gardiner, Aug 09 2002
Total number of printer jobs in all possible schedules for n time slots in the first-come-first-served (FCFS) policy.
a(n) = Sum_{p prime < 2*n} A010051(2*n - p). - Reinhard Zumkeller, Oct 19 2011
For n > 1: length of n-th row of triangle A171637. - Reinhard Zumkeller, Mar 03 2014
a(n) = A001221(A238711(n)) = A238778(n) / n. - Reinhard Zumkeller, Mar 06 2014
From Robert G. Wilson v, Dec 15 2016: (Start)
First occurrence of k: 1, 2, 4, 5, 8, 11, 12, 17, 18, 37, 24, 53, 30, 89, 39, 71, 42, 101, 45, 179, 57, 137, 72, 193, 60, 233, ..., .
Conjectured last occurrence of k: 1, 3, 6, 19, 34, 31, 64, 61, 76, 79, 94, 83, 166, 199, 136, 181, 184, 229, 244, 271, 316, 277, 346, 313, 301, 293, ..., .
Conjectured number occurrences of k: 1, 2, 2, 3, 6, 3, 8, 4, 7, 5, 11, 5, 11, 8, 10, 3, 17, 7, 16, 3, 13, 8, 21, 4, 12, 3, 22, 7, 20, 8, 15, ..., .
Records: 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 24, 26, 28, 38, 42, 48, 54, 60, 64, 82, 88, 102, 104, 114, 116, 136, 146, 152, 166, 182, ..., .
(End)

Crossrefs

Cf. A010051. Essentially the same as A002372.
Cf. A073610.

Programs

  • Haskell
    a035026 n = sum $ map (a010051 . (2 * n -)) $
       takeWhile (< 2 * n) a000040_list
    -- Reinhard Zumkeller, Oct 19 2011
  • Maple
    A035026 := proc(n)
        local a,i ;
        a := 0 ;
        for i from 1 to 2*n-1 do
            if isprime(i) and isprime(2*n-i) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jul 01 2013
  • Mathematica
    For[lst={}; n=1, n<=100, n++, For[cnt=0; i=1, i<=2n-1, i++ If[PrimeQ[i]&&PrimeQ[2n-i], cnt++ ]]; AppendTo[lst, cnt]]; lst
    f[n_] := Block[{c = Boole@ PrimeQ[ n/2], p = 2}, While[ 2p < n, If[ PrimeQ[n - p], c += 2]; p = NextPrime@ p]; c];; Array[ f[ 2#] &, 90] (* Robert G. Wilson v, Dec 15 2016 *)

Formula

For n > 1, a(n) = 2*A045917(n) - A010051(n).
a(n) = A010051(n) + 2*A061357(n). - Wesley Ivan Hurt, Aug 21 2013
a(n) = A073610(2*n). - Ridouane Oudra, Sep 06 2023

Extensions

Corrected by T. D. Noe, May 05 2002

A171637 Triangle read by rows in which row n lists the distinct primes of the distinct decompositions of 2n into unordered sums of two primes.

Original entry on oeis.org

2, 3, 3, 5, 3, 5, 7, 5, 7, 3, 7, 11, 3, 5, 11, 13, 5, 7, 11, 13, 3, 7, 13, 17, 3, 5, 11, 17, 19, 5, 7, 11, 13, 17, 19, 3, 7, 13, 19, 23, 5, 11, 17, 23, 7, 11, 13, 17, 19, 23, 3, 13, 19, 29, 3, 5, 11, 17, 23, 29, 31, 5, 7, 13, 17, 19, 23, 29, 31, 7, 19, 31, 3, 11, 17, 23, 29, 37, 5, 11
Offset: 2

Views

Author

Juri-Stepan Gerasimov, Dec 13 2009

Keywords

Comments

Each entry of the n-th row is a prime p from the n-th row of A002260 such that 2n-p is also prime. If A002260 is read as the antidiagonals of a square array, this sequence can be read as an irregular square array (see example below). The n-th row has length A035026(n). This sequence is the nonzero subsequence of A154725. - Jason Kimberley, Jul 08 2012

Examples

			a(2)=2 because for row 2: 2*2=2+2; a(3)=3 because for row 3: 2*3=3+3; a(4)=3 and a(5)=5 because for row 4: 2*4=3+5; a(6)=3, a(7)=5 and a(8)=7 because for row 5: 2*5=3+7=5+5.
The table starts:
2;
3;
3,5;
3,5,7;
5,7;
3,7,11;
3,5,11,13;
5,7,11,13;
3,7,13,17;
3,5,11,17,19;
5,7,11,13,17,19;
3,7,13,19,23;
5,11,17,23;
7,11,13,17,19,23;
3,13,19,29;
3,5,11,17,23,29,31;
As an irregular square array [_Jason Kimberley_, Jul 08 2012]:
3 . 3 . 3 . . . 3 . 3 . . . 3 . 3
. . . . . . . . . . . . . . . .
5 . 5 . 5 . . . 5 . 5 . . . 5
. . . . . . . . . . . . . .
7 . 7 . 7 . . . 7 . 7 . .
. . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . .
11. 11. 11. . . 11
. . . . . . . .
13. 13. 13. .
. . . . . .
. . . . .
. . . .
17. 17
. .
19
		

Crossrefs

Related triangles: A154720, A154721, A154722, A154723, A154724, A154725, A154726, A154727, A184995. - Jason Kimberley, Sep 03 2011
Cf. A020481 (left edge), A020482 (right edge), A238778 (row sums), A238711 (row products), A000040, A010051.

Programs

  • Haskell
    a171637 n k = a171637_tabf !! (n-2) !! (k-1)
    a171637_tabf = map a171637_row [2..]
    a171637_row n = reverse $ filter ((== 1) . a010051) $
       map (2 * n -) $ takeWhile (<= 2 * n) a000040_list
    -- Reinhard Zumkeller, Mar 03 2014
  • Mathematica
    Table[ps = Prime[Range[PrimePi[2*n]]]; Select[ps, MemberQ[ps, 2*n - #] &], {n, 2, 50}] (* T. D. Noe, Jan 27 2012 *)

Extensions

Keyword:tabl replaced by tabf, arbitrarily defined a(1) removed and entries checked by R. J. Mathar, May 22 2010
Definition clarified by N. J. A. Sloane, May 23 2010

A238778 Sum of all primes p such that 2n - p is also a prime.

Original entry on oeis.org

2, 3, 8, 15, 12, 21, 32, 36, 40, 55, 72, 65, 56, 90, 64, 119, 144, 57, 120, 168, 132, 161, 240, 200, 156, 270, 168, 203, 360, 155, 320, 396, 136, 350, 432, 333, 380, 546, 320, 369, 672, 387, 352, 810, 368, 423, 672, 294, 600, 816, 520, 583, 864, 660, 784
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2014

Keywords

Comments

Sum of n-th row in triangle A171637.

Crossrefs

Programs

  • Haskell
    a238778 n = sum $ filter ((== 1) . a010051') $
       map (2 * n -) $ takeWhile (<= 2 * n) a000040_list
    
  • Mathematica
    Table[Total@Select[Select[Prime[Range[2 n]], # < 2 n &], PrimeQ[2 n - #] &], {n, 2, 56}] (* Robert Price, Apr 26 2025 *)
  • PARI
    a(n) = my(s=0); forprime(p=2, 2*n, if(isprime(2*n-p), s+=p)); s; \\ Michel Marcus, Jan 24 2022

Formula

a(n) = A008472(A238711(n)).
a(n) mod 2 = A010051(n).
a(n) = n*A035026(n). - Robert G. Wilson v, Apr 28 2018

A337568 Product of all the parts in the Goldbach partitions (p,q) of 2n such that p + q = 2n, p <= q, and p,q prime (or 1 if no Goldbach partition of 2n exists).

Original entry on oeis.org

1, 4, 9, 15, 525, 35, 1617, 2145, 5005, 4641, 586245, 1616615, 1550913, 21505, 7436429, 21489, 985982745, 3038795305, 78337, 13844919, 10393190665, 12838371, 6896776665, 7292509103495, 12023917269, 70691995, 37198413949697, 62483343, 80309179885, 98755025688454681, 138969249
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 29 2020

Keywords

Examples

			a(9) = 5005; 2*9 = 18 has Goldbach partitions (13,5) and (11,7). The product of all the parts is 13 * 5 * 11 * 7 = 5005.
		

Crossrefs

Cf. A010051, A045917, A238711, A362640 (product of the larger primes q), A362641 (product of the smaller primes p).

Programs

  • Mathematica
    Table[Product[(i*(2 n - i))^((PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1])), {i, n}], {n, 40}]

Formula

a(n) = Product_{i=1..n} (i*(2*n-i))^(c(i)*c(2*n-i)), where c is the prime characteristic (A010051).
a(n) = A362640(n) * A362641(n).
Showing 1-5 of 5 results.