cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002282 a(n) = 8*(10^n - 1)/9.

Original entry on oeis.org

0, 8, 88, 888, 8888, 88888, 888888, 8888888, 88888888, 888888888, 8888888888, 88888888888, 888888888888, 8888888888888, 88888888888888, 888888888888888, 8888888888888888, 88888888888888888, 888888888888888888, 8888888888888888888, 88888888888888888888, 888888888888888888888
Offset: 0

Views

Author

Keywords

Comments

If the initial term is omitted, might be called eightful (or hateful) numbers!

Examples

			Curious multiplications:
9*9 + 7 = 88;
98*9 + 6 = 888;
987*9 + 5 = 8888;
9876*9 + 4 = 88888;
98765*9 + 3 = 888888;
987654*9 + 2 = 8888888;
9876543*9 + 1 = 88888888;
98765432*9 + 0 = 888888888;
987654321*9 - 1 = 8888888888;
9876543210*9 - 2 = 88888888888. - _Philippe Deléham_, Mar 09 2014
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 32.

Crossrefs

Programs

  • Maple
    A002282:=n->8*(10^n - 1)/9; seq(A002282(n), n=0..20); # Wesley Ivan Hurt, Mar 10 2014
  • Mathematica
    LinearRecurrence[{11,-10}, {0,8}, 20] (* Harvey P. Dale, May 30 2013 *)
  • PARI
    { a=-4/5; for (n = 0, 200, a+=8*10^(n - 1); write("b002282.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 27 2009
    
  • Python
    def a(n): return 8*(10**n - 1)//9 # Martin Gergov, Oct 19 2022

Formula

From Jaume Oliver Lafont, Feb 03 2009: (Start)
a(n) = 11*a(n-1) - 10*a(n-2), with a(0)=0, a(1)=8.
G.f.: 8*x/((1-x)*(1-10*x)). (End)
a(n) = A178635(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
a(n) = a(n-1) + 8*10^(n-1), with a(0)=0. - Vincenzo Librandi, Jul 22 2010
a(n) = 8*A002275(n) = A002283(n) - A002275(n). - Carauleanu Marc, Sep 03 2016
From Ilya Gutkovskiy, Sep 03 2016: (Start)
E.g.f.: 8*(exp(9*x) - 1)*exp(x)/9.
a(n) = floor(8*10^n/9). (End)
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A246058(n) - 1)/2.
a(n) = A010785(A017257(n-1)) for n >= 1. (End)

A246057 a(n) = (5*10^n - 2)/3.

Original entry on oeis.org

1, 16, 166, 1666, 16666, 166666, 1666666, 16666666, 166666666, 1666666666, 16666666666, 166666666666, 1666666666666, 16666666666666, 166666666666666, 1666666666666666, 16666666666666666, 166666666666666666, 1666666666666666666, 16666666666666666666, 166666666666666666666
Offset: 0

Views

Author

Vincenzo Librandi, Aug 13 2014

Keywords

Comments

a(k-1) = (10^k - 4)/6, together with b(k) = 3*a(k-1) + 2 = A093143(k) and c(k) = 2*a(k-1) + 1 = A002277(k) are k-digit numbers for k >= 1 satisfying the so-called curious cubic identity a(k-1)^3 + b(k)^3 + c(k)^3 = a(k)*10^(2*k) + b(k)*10^k + c(k) (concatenated a(k)b(k)c(k)). This k-family and the proof of the identity has been given in the introduction of the van der Poorten reference. Thanks go to S. Heinemeyer for bringing these identities to my attention. - Wolfdieter Lang, Feb 07 2017

Examples

			Curious cubic identities (see a comment and reference above): 1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ... - _Wolfdieter Lang_, Feb 07 2017
		

Crossrefs

Cf. sequences with terms of the form 1k..k where the digit k is repeated n times: A000042 (k=1), A090843 (k=2), A097166 (k=3), A099914 (k=4), A099915 (k=5), this sequence (k=6), A246058 (k=7), A246059 (k=8), A067272 (k=9).

Programs

  • Magma
    [(5*10^n-2)/3: n in [0..20]];
    
  • Mathematica
    Table[(5 10^n - 2)/3, {n, 0, 20}]
  • PARI
    vector(50, n, (5*10^(n-1)-2)/3) \\ Derek Orr, Aug 13 2014

Formula

G.f.: (1 + 5*x)/((1 - x)*(1 - 10*x)).
a(n) = 11*a(n-1) - 10*a(n-2).
E.g.f.: exp(x)*(5*exp(9*x) - 2)/3. - Stefano Spezia, May 02 2025
a(n) = A323639(n+1)/2 = A086948(n+1)/12. - Elmo R. Oliveira, May 07 2025
Showing 1-2 of 2 results.