cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084771 Coefficients of expansion of 1/sqrt(1 - 10*x + 9*x^2); also, a(n) is the central coefficient of (1 + 5*x + 4*x^2)^n.

Original entry on oeis.org

1, 5, 33, 245, 1921, 15525, 127905, 1067925, 9004545, 76499525, 653808673, 5614995765, 48416454529, 418895174885, 3634723102113, 31616937184725, 275621102802945, 2407331941640325, 21061836725455905, 184550106298084725
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003

Keywords

Comments

Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the U steps come in four colors and the H steps come in five colors. - N-E. Fahssi, Mar 30 2008
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (0,1), and three kinds of steps (1,1). - Joerg Arndt, Jul 01 2011
Sums of squares of coefficients of (1+2*x)^n. - Joerg Arndt, Jul 06 2011
The Hankel transform of this sequence gives A103488. - Philippe Deléham, Dec 02 2007
Partial sums of A085363. - J. M. Bergot, Jun 12 2013
Diagonal of rational functions 1/(1 - x - y - 3*x*y), 1/(1 - x - y*z - 3*x*y*z). - Gheorghe Coserea, Jul 06 2018

Examples

			G.f.: 1/sqrt(1-2*b*x+(b^2-4*c)*x^2) yields central coefficients of (1+b*x+c*x^2)^n.
		

Crossrefs

Cf. A001850, A059231, A059304, A246923 (a(n)^2).

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->Binomial(n,k)^2*4^k)); # Muniru A Asiru, Jul 29 2018
    
  • Magma
    [3^n*Evaluate(LegendrePolynomial(n), 5/3) : n in [0..40]]; // G. C. Greubel, May 30 2023
    
  • Maple
    seq(simplify(hypergeom([-n,1/2], [1], -8)),n=0..19); # Peter Luschny, Apr 26 2016
  • Mathematica
    Table[n! SeriesCoefficient[E^(5 x) BesselI[0, 4 x], {x, 0, n}], {n, 0, 30}] (* Vincenzo Librandi, May 10 2013 *)
    Table[Hypergeometric2F1[-n, -n, 1, 4], {n,0,30}] (* Vladimir Reshetnikov, Nov 29 2013 *)
    CoefficientList[Series[1/Sqrt[1-10x+9x^2],{x,0,30}],x] (* Harvey P. Dale, Mar 08 2016 *)
    Table[3^n*LegendreP[n, 5/3], {n, 0, 40}] (* G. C. Greubel, May 30 2023 *)
  • PARI
    {a(n) = if( n<0, -3 * 9^n * a(-1-n), sum(k=0,n, binomial(n, k)^2 * 4^k))}; /* Michael Somos, Oct 08 2003 */
    
  • PARI
    {a(n) = if( n<0, -3 * 9^n * a(-1-n), polcoeff((1 + 5*x + 4*x^2)^n, n))}; /* Michael Somos, Oct 08 2003 */
    
  • PARI
    /* as lattice paths: same as in A092566 but use */
    steps=[[1,0], [0,1], [1,1], [1,1], [1,1]]; /* note the triple [1,1] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • PARI
    a(n)={local(v=Vec((1+2*x)^n));sum(k=1,#v,v[k]^2);} /* Joerg Arndt, Jul 06 2011 */
    
  • PARI
    a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])^2+imag(v[k])^2);} /* Joerg Arndt, Jul 06 2011 */
    
  • SageMath
    [3^n*gen_legendre_P(n, 0, 5/3) for n in range(41)] # G. C. Greubel, May 30 2023

Formula

G.f.: 1 / sqrt(1 - 10*x + 9*x^2).
From Vladeta Jovovic, Aug 20 2003: (Start)
Binomial transform of A059304.
G.f.: Sum_{k >= 0} binomial(2*k,k)*(2*x)^k/(1-x)^(k+1).
E.g.f.: exp(5*x)*BesselI(0, 4*x). (End)
a(n) = Sum_{k = 0..n} Sum_{j = 0..n-k} C(n,j)*C(n-j,k)*C(2*n-2*j,n-j). - Paul Barry, May 19 2006
a(n) = Sum_{k = 0..n} 4^k*C(n,k)^2. - heruneedollar (heruneedollar(AT)gmail.com), Mar 20 2010
a(n) ~ 3^(2*n+1)/(2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Sep 11 2012
D-finite with recurrence: n*a(n) = 5*(2*n-1)*a(n-1) - 9*(n-1)*a(n-2). - R. J. Mathar, Nov 26 2012
a(n) = hypergeom([-n, -n], [1], 4). - Vladimir Reshetnikov, Nov 29 2013
a(n) = hypergeom([-n, 1/2], [1], -8). - Peter Luschny, Apr 26 2016
From Michael Somos, Jun 01 2017: (Start)
a(n) = -3 * 9^n * a(-1-n) for all n in Z.
0 = a(n)*(+81*a(n+1) -135*a(n+2) +18*a(n+3)) +a(n+1)*(-45*a(n+1) +100*a(n+2) -15*a(n+3)) +a(n+2)*(-5*a(n+2) +a(n+3)) for all n in Z. (End)
From Peter Bala, Nov 13 2022: (Start)
1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 5*x^2 + 29*x^3 + 185*x^4 + 1257*x^5 + ... is the g.f. of A059231.
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all positive integers n and r and all primes p. (End)
a(n) = 3^n * LegendreP(n, 5/3). - G. C. Greubel, May 30 2023
a(n) = (1/4)^n * Sum_{k=0..n} 9^k * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A248167 Expansion of g.f.: 1 / AGM(1-33*x, sqrt((1-9*x)*(1-121*x))).

Original entry on oeis.org

1, 49, 3249, 261121, 23512801, 2266426449, 228110356881, 23642146057761, 2502698427758529, 269194720423487089, 29319711378381802609, 3225762406810715071041, 357859427246543331576481, 39977637030683399494792849, 4492572407488016429783217489, 507445676088537643607528136801
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2014

Keywords

Comments

In general, the g.f. of the squares of coefficients in g.f. 1/sqrt((1-p*x)*(1-q*x)) is given by 1/AGM(1-p*q*x, sqrt((1-p^2*x)*(1-q^2*x))) = Sum_{n>=0} x^n*( Sum_{k=0..n} p^(n-k)*((q-p)/4)^k*C(n,k)*C(2*k,k) )^2, and consists of integer coefficients when 4|(q-p). Here AGM(x, y) = AGM((x+y)/2, sqrt(x*y)) is the arithmetic-geometric mean.

Examples

			G.f.: A(x) = 1 + 49*x + 3249*x^2 + 261121*x^3 + 23512801*x^4 +...
where the square-root of the terms yields A248168:
[1, 7, 57, 511, 4849, 47607, 477609, 4862319, 50026977, ...],
the g.f. of which is 1/sqrt((1-3*x)*(1-11*x)).
		

Crossrefs

Programs

  • Magma
    m:=40;
    A248168:= [n le 2 select 7^(n-1) else (7*(2*n-3)*Self(n-1) - 33*(n-2)*Self(n-2))/(n-1) : n in [1..m+2]];
    A248167:= func< n | (A248168[n+1])^2 >;
    [A248167(n): n in [0..m]]; // G. C. Greubel, May 31 2025
    
  • Mathematica
    a[n_] := Sum[3^(n - k) * 2^k * Binomial[n, k] * Binomial[2k, k], {k, 0, n} ]^2; Array[a, 17, 0] (* Amiram Eldar, Dec 11 2018 *)
  • PARI
    {a(n,p=3,q=11)=polcoeff( 1 / agm(1-p*q*x, sqrt((1-p^2*x)*(1-q^2*x) +x*O(x^n))), n) }
    for(n=0, 20, print1(a(n,3,11), ", "))
    
  • PARI
    {a(n,p=3,q=11)=polcoeff( 1 / sqrt((1-p*x)*(1-q*x) +x*O(x^n)), n)^2 }
    for(n=0, 20, print1(a(n,3,11), ", "))
    
  • PARI
    {a(n,p=3,q=11)=sum(k=0,n,p^(n-k)*((q-p)/4)^k*binomial(n,k)*binomial(2*k,k))^2 }
    for(n=0, 20, print1(a(n,3,11), ", "))
    
  • SageMath
    @CachedFunction
    def b(n): # b = A248168
         if (n<2): return 7^n
         else: return (7*(2*n-1)*b(n-1) - 33*(n-1)*b(n-2))//n
    def A248167(n): return (b(n))^2
    print([A248167(n) for n in range(41)]) # G. C. Greubel, May 31 2025

Formula

a(n) = A248168(n)^2 = ( Sum_{k=0..n} 3^(n-k)*2^k * C(n,k) * C(2*k,k) )^2.
G.f.: 1 / AGM((1-3*x)*(1+11*x), (1+3*x)*(1-11*x)) = Sum_{n>=0} a(n)*x^(2*n).
a(n) ~ 11^(2*n + 1) / (8*Pi*n). - Vaclav Kotesovec, Sep 27 2019

A322247 a(n) = A322246(n)^2, the square of the central coefficient in (1 + 5*x + 9*x^2)^n.

Original entry on oeis.org

1, 25, 1849, 156025, 14523721, 1426950625, 145317252025, 15178231605625, 1615509001626025, 174471431239950625, 19062335608125901729, 2102483602307417980225, 233721380163477368733481, 26154175972512598202392225, 2943361280244176889333396889, 332869229155486455718147125625, 37806108834415039621850996946025, 4310099976506176089944803738530625, 493021434686696395739629566004713025
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2018

Keywords

Examples

			G.f.: A(x) = 1 + 25*x + 1849*x^2 + 156025*x^3 + 14523721*x^4 + 1426950625*x^5 + 145317252025*x^6 + 15178231605625*x^7 + 1615509001626025*x^8 + ...
that is,
A(x) = 1 + 5^2*x + 43^2*x^2 + 395^2*x^3 + 3811^2*x^4 + 37775^2*x^5 + 381205^2*x^6 + 3895925^2*x^7 + 40193395^2*x^8 + 417697775^2*x^9 + ... + A322246(n)^2*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n-k) * 3^k * Binomial[n,k] * Binomial[2k,k], {k, 0, n}]^2; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
  • PARI
    /* a(n) = A322246(n)^2 - g.f. */
    {a(n)=polcoeff(1/sqrt( (1 - x)*(1 + 11*x) +x*O(x^n)), n)^2}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* a(n) = A322246(n)^2 - g.f. */
    {a(n) = polcoeff( (1 + 5*x + 9*x^2 +x*O(x^n))^n, n)^2}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* a(n) = A322246(n)^2 - binomial sum */
    {a(n) = sum(k=0,n, (-1)^(n-k)*3^k*binomial(n,k)*binomial(2*k,k))^2}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* a(n) = A322246(n)^2 - binomial sum */
    {a(n) = sum(k=0,n, 11^(n-k)*(-3)^k*binomial(n,k)*binomial(2*k,k))^2}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Using AGM: */
    {a(n)=polcoeff( 1 / agm(1 + 1*11*x, sqrt((1 - 1^2*x)*(1 - 11^2*x) +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f.: 1 / AGM(1 + 11*x, sqrt((1 - x)*(1 - 11^2*x)) ), where AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) is the arithmetic-geometric mean.
G.f.: 1 / AGM((1-x)*(1-11*x), (1+x)*(1+11*x)) = Sum_{n>=0} a(n)*x^(2*n).
a(n) = A322248(n)^2, where A322248(n) = a(n) = Sum_{k=0..n} (-1)^(n-k) * 3^k * binomial(n,k)*binomial(2*k,k).
a(n) ~ 11^(2*n + 1) / (12*Pi*n). - Vaclav Kotesovec, Dec 13 2018

A322249 a(n) = A322248(n)^2, the square of the central coefficient in (1 + 5*x + 16*x^2)^n.

Original entry on oeis.org

1, 25, 3249, 366025, 48455521, 6646325625, 947789867025, 138422872355625, 20598606105401025, 3109408600719825625, 474780862425986767729, 73175222677868396505225, 11366022325041154078402081, 1777059915791491092441607225, 279404859303904515406536763089, 44144451113336819125597110875625, 7004264626817806908496520658161025, 1115512654966236899680358546064905625
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2018

Keywords

Examples

			G.f.: A(x) = 1 + 25*x + 3249*x^2 + 366025*x^3 + 48455521*x^4 + 6646325625*x^5 + 947789867025*x^6 + 138422872355625*x^7 + 20598606105401025*x^8 + ...
such that
A(x) = 1 + 5^2*x + 57^2*x^2 + 605^2*x^3 + 6961^2*x^4 + 81525^2*x^5 + 973545^2*x^6 + 11765325^2*x^7 + 143522145^2*x^8 + ... + A322248(n)^2*x^n + ...
		

Crossrefs

Programs

  • PARI
    /* a(n) = A322248(n)^2 - g.f. */
    {a(n)=polcoeff(1/sqrt((1 + 3*x)*(1 - 13*x) +x*O(x^n)), n)^2}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* a(n) = A322248(n)^2 - g.f. */
    {a(n) = polcoeff( (1 + 5*x + 16*x^2 +x*O(x^n))^n, n)^2}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* a(n) = A322248(n)^2 - binomial sum */
    {a(n) = sum(k=0,n, (-3)^(n-k)*4^k*binomial(n,k)*binomial(2*k,k))^2}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Using binomial formula: */
    {a(n) = sum(k=0,n, 13^(n-k)*(-4)^k*binomial(n,k)*binomial(2*k,k))^2}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Using AGM: */
    {a(n)=polcoeff( 1 / agm(1 + 3*13*x, sqrt((1 - 3^2*x)*(1 - 13^2*x) +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f.: 1 / AGM(1 + 3*13*x, sqrt((1 - 3^2*x)*(1 - 13^2*x)) ), where AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) is the arithmetic-geometric mean.
G.f.: 1 / AGM((1-3*x)*(1-13*x), (1+3*x)*(1+13*x)) = Sum_{n>=0} a(n)*x^(2*n).
a(n) = A322248(n)^2, where A322248(n) = a(n) = Sum_{k=0..n} (-3)^(n-k) * 4^k * binomial(n,k)*binomial(2*k,k).
a(n) = A322248(n)^2, where A322248(n) = a(n) = Sum_{k=0..n} 13^(n-k) * (-4)^k * binomial(n,k)*binomial(2*k,k).
a(n) ~ 13^(2*n + 1) / (16*Pi*n). - Vaclav Kotesovec, Dec 10 2018

A307810 Expansion of 1/AGM(1-64*x, sqrt((1-16*x)*(1-256*x))).

Original entry on oeis.org

1, 100, 13924, 2371600, 453093796, 92598490000, 19745403216400, 4333667896360000, 971177275449892900, 221106619001508490000, 50967394891692703241104, 11866732390447357481358400, 2785834789480617203561744656, 658549235163074008904405646400
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2019

Keywords

Comments

See A246923.
Also the squares of coefficients in g.f. 1/sqrt((1-4*x)*(1-16*x)).

Crossrefs

Cf. A307695.
(Sum_{k=0..n} c^(n-k)*e^k*binomial(n,k)*binomial(2k,k))^2 = (Sum_{k=0..n} d^(n-k)*(-e)^k*binomial(n,k)*binomial(2k,k))^2, where e = (d-c)/4: A002894 (c=0,d=4,e=1), A246467 (c=1,d=5,e=1), A246876 (c=2,d=6,e=1), A246906 (c=3,d=7,e=1), A307811 (c=5,d=9,e=1), A322240 (c=-3,d=5,e=2), A322243 (c=-1,d=7,e=2), A246923 (c=1,d=9,e=2), A248167 (c=3, d=11,e=2), A322247 (c=-1,d=11,e=3), this sequence (c=4,d=16,e=3), A322245 (c=-5,d=11,e=4), A322249 (c=-3,d=13,e=4).

Programs

  • Mathematica
    a[n_] := Sum[4^(n-k) * 3^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]^2; Array[a, 14, 0] // Flatten (* Amiram Eldar, May 13 2021 *)
  • PARI
    N=20; x='x+O('x^N); Vec(1/agm(1-64*x, sqrt((1-16*x)*(1-256*x))))
    
  • PARI
    {a(n) = sum(k=0, n, 4^(n-k)*3^k*binomial(n, k)*binomial(2*k, k))^2}
    
  • PARI
    {a(n) = sum(k=0, n, 16^(n-k)*(-3)^k*binomial(n, k)*binomial(2*k, k))^2}

Formula

a(n) = A307695(n)^2 = (Sum_{k=0..n} 4^(n-k)*3^k*binomial(n,k)*binomial(2k,k))^2 = (Sum_{k=0..n} 16^(n-k)*(-3)^k*binomial(n,k)*binomial(2k,k))^2.
a(n) ~ 2^(8*n+2) / (3*Pi*n). - Vaclav Kotesovec, Sep 27 2019

A307811 Expansion of 1/AGM(1-45*x, sqrt((1-25*x)*(1-81*x))).

Original entry on oeis.org

1, 49, 2601, 148225, 8970025, 570111129, 37678303881, 2567836387809, 179267329355625, 12754414737348025, 921185098227422161, 67340346156989933769, 4971327735657992896201, 369994703739586257235225, 27725052308247030792515625, 2089567204521186409129541025
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2019

Keywords

Comments

See A246923.
Also the squares of coefficients in g.f. 1/sqrt((1-5*x)*(1-9*x)).

Crossrefs

Cf. A104454.
(Sum_{k=0..n} c^(n-k)*e^k*binomial(n,k)*binomial(2k,k))^2 = (Sum_{k=0..n} d^(n-k)*(-e)^k*binomial(n,k)*binomial(2k,k))^2, where e = (d-c)/4: A002894 (c=0,d=4,e=1), A246467 (c=1,d=5,e=1), A246876 (c=2,d=6,e=1), A246906 (c=3,d=7,e=1), this sequence (c=5,d=9,e=1), A322240 (c=-3,d=5,e=2), A322243 (c=-1,d=7,e=2), A246923 (c=1,d=9,e=2), A248167 (c=3, d=11,e=2), A322247 (c=-1,d=11,e=3), A307810 (c=4,d=16,e=3), A322245 (c=-5,d=11,e=4), A322249 (c=-3,d=13,e=4).

Programs

  • Mathematica
    a[n_] := Sum[5^(n-k) * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]^2; Array[a, 16, 0] // Flatten (* Amiram Eldar, May 13 2021 *)
  • PARI
    N=20; x='x+O('x^N); Vec(1/agm(1-45*x, sqrt((1-25*x)*(1-81*x))))
    
  • PARI
    {a(n) = sum(k=0, n, 5^(n-k)*binomial(n, k)*binomial(2*k, k))^2}
    
  • PARI
    {a(n) = sum(k=0, n, 9^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))^2}

Formula

a(n) = A104454(n)^2 = (Sum_{k=0..n} 5^(n-k)*binomial(n,k)*binomial(2k,k))^2 = (Sum_{k=0..n} 9^(n-k)*(-1)^k*binomial(n,k)*binomial(2k,k))^2.
a(n) ~ 3^(4*n+2) / (4*Pi*n). - Vaclav Kotesovec, Sep 27 2019
Showing 1-6 of 6 results.