cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A322570 Positive integers k such that A270710(k) (= (k+1)*(3*k-1)) have only 1 or 2 different digits in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 12, 16, 17, 33, 34, 48, 54, 285, 333, 334, 365, 385, 430, 471, 516, 816, 1049, 3333, 3334, 33333, 33334, 333333, 333334, 483048, 3333333, 3333334, 33333333, 33333334, 333333333, 333333334, 3333333333, 3333333334, 33333333333, 33333333334
Offset: 1

Views

Author

Seiichi Manyama, Aug 29 2019

Keywords

Crossrefs

Cf. A002277, A016069, A093137, A213517 (in case of triangular numbers), A270710, A322571.

Programs

  • Magma
    [k:k in [1..10000000]| #Set(Intseq((k+1)*(3*k-1))) le 2]; // Marius A. Burtea, Aug 29 2019
  • Mathematica
    Select[Range@ 50000, Length@ Union@ IntegerDigits[3 #^2 + 2 # - 1] <= 2 &] (* Giovanni Resta, Sep 04 2019 *)
  • PARI
    for(k=1, 1e8, if(#Set(digits(3*k^2+2*k-1))<=2, print1(k", ")))
    

Formula

For k > 0, A002277(k) is a term.
For k >= 0, A002277(k) + 1 (= A093137(k)) is a term.

Extensions

a(35)-a(36) from Jinyuan Wang, Aug 30 2019
a(37)-a(40) from Giovanni Resta, Sep 04 2019

A322571 Positive integers A270710(k) (= (k+1)*(3*k-1)) which have only 1 or 2 different digits in base 10.

Original entry on oeis.org

4, 15, 32, 55, 84, 119, 455, 799, 900, 3332, 3535, 7007, 8855, 244244, 333332, 335335, 400404, 445444, 555559, 666464, 799799, 1999199, 3303300, 33333332, 33353335, 3333333332, 3333533335, 333333333332, 333335333335, 700007077007, 33333333333332, 33333353333335, 3333333333333332, 3333333533333335
Offset: 1

Views

Author

Seiichi Manyama, Aug 29 2019

Keywords

Crossrefs

Cf. A002277, A018885 (in case of squares), A213516 (in case of triangular numbers), A270710, A322570, A323639.

Programs

  • Magma
    [a:k in [1..10000000]| #Set(Intseq(a)) le 2 where a is (k+1)*(3*k-1)]; // Marius A. Burtea, Aug 29 2019
  • Mathematica
    Select[Table[(n+1)(3n-1),{n,3334*10^4}],Count[DigitCount[#],0]>7&] (* Harvey P. Dale, Jun 12 2022 *)
  • PARI
    for(k=1, 1e8, if(#Set(digits(j=3*k^2+2*k-1))<=2, print1(j", ")))
    

Formula

a(n) = A270710(A322570(n)).
For k > 0, A002277(2*k) - 1 is a term.

A271675 Numbers m such that 3*m + 4 is a square.

Original entry on oeis.org

0, 4, 7, 15, 20, 32, 39, 55, 64, 84, 95, 119, 132, 160, 175, 207, 224, 260, 279, 319, 340, 384, 407, 455, 480, 532, 559, 615, 644, 704, 735, 799, 832, 900, 935, 1007, 1044, 1120, 1159, 1239, 1280, 1364, 1407, 1495, 1540, 1632, 1679, 1775, 1824, 1924, 1975, 2079, 2132, 2240, 2295, 2407
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 12 2016

Keywords

Comments

7 is the unique prime in this sequence. If m is in this sequence, then 3*m + 4 = k^2 for k is nonzero integer, that is, m = (k^2 - 4)/3 = (k-2)*(k+2)/3. So m can be only prime if one of divisors is prime and another one is 1. Otherwise there should be more than 1 prime divisors, that is n must be composite. - Altug Alkan, Apr 12 2016
From Ray Chandler, Apr 12 2016: (Start)
Square roots of resulting squares gives A001651 (with a different starting point).
Sequence is the union of (positive terms) in A140676 and A270710. (End)
The sequence terms are the exponents in the expansion of Sum_{n >= 0} q^n*(1 - q)*(1 - q^3)*...*(1 - q^(2*n+1)) = 1 - q^4 - q^7 + q^15 + q^20 - q^32 - q^50 + + - - .... - Peter Bala, Dec 19 2024

Examples

			a(4) = 32 because 3*32 + 4 = 100 = 10*10.
		

Crossrefs

Cf. numbers n such that 3*n + k is a square: A120328 (k=-6), A271713 (k=-5), A056107 (k=-3), A257083 (k=-2), A033428 (k=0), A001082 (k=1), A080663 (k=3), this sequence (k=4), A100536 (k=6).

Programs

  • Magma
    [n: n in [0..4000] | IsSquare(3*n+4)];
    
  • Mathematica
    Select[Range[0,2500], IntegerQ@ Sqrt[3 # + 4] &] (* Michael De Vlieger, Apr 12 2016 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,4,7,15,20},60] (* Harvey P. Dale, Dec 09 2016 *)
  • Python
    from gmpy2 import is_square
    for n in range(0,10**5):
        if(is_square(3*n+4)):print(n)
    # Soumil Mandal, Apr 12 2016

Formula

O.g.f.: x^2*(4 + 3*x - x^3)/((1 + x)^2*(1 - x)^3).
E.g.f.: 1 + (1 - 2*x)*exp(-x)/8 - 3*(3 - 4*x - 2*x^2)*exp(x)/8.
a(n) = A001082(n+1) - 1 = (6*n*(n+1) + (2*n + 1)*(-1)^n - 1)/8 - 1. Therefore: a(2*k+1) = k*(3*k+4), a(2*k) = (k+1)*(3*k-1).
Sum_{n>=2} 1/a(n) = 19/16 - Pi/(4*sqrt(3)). - Amiram Eldar, Jul 26 2024

Extensions

Edited and extended by Bruno Berselli, Apr 12 2016

A326728 A(n, k) = n*(k - 1)*k/2 - k, square array for n >= 0 and k >= 0 read by ascending antidiagonals.

Original entry on oeis.org

0, 0, -1, 0, -1, -2, 0, -1, -1, -3, 0, -1, 0, 0, -4, 0, -1, 1, 3, 2, -5, 0, -1, 2, 6, 8, 5, -6, 0, -1, 3, 9, 14, 15, 9, -7, 0, -1, 4, 12, 20, 25, 24, 14, -8, 0, -1, 5, 15, 26, 35, 39, 35, 20, -9, 0, -1, 6, 18, 32, 45, 54, 56, 48, 27, -10
Offset: 0

Views

Author

Peter Luschny, Aug 04 2019

Keywords

Comments

A formal extension of the figurative numbers A139600 to negative n.

Examples

			[0] 0, -1, -2, -3, -4, -5, -6,  -7,  -8,  -9, -10, ... A001489
[1] 0, -1, -1,  0,  2,  5,  9,  14,  20,  27,  35, ... A080956
[2] 0, -1,  0,  3,  8, 15, 24,  35,  48,  63,  80, ... A067998
[3] 0, -1,  1,  6, 14, 25, 39,  56,  76,  99, 125, ... A095794
[4] 0, -1,  2,  9, 20, 35, 54,  77, 104, 135, 170, ... A014107
[5] 0, -1,  3, 12, 26, 45, 69,  98, 132, 171, 215, ... A326725
[6] 0, -1,  4, 15, 32, 55, 84, 119, 160, 207, 260, ... A270710
[7] 0, -1,  5, 18, 38, 65, 99, 140, 188, 243, 305, ...
		

Crossrefs

Cf. A001489 (n=0), A080956 (n=1), A067998 (n=2), A095794 (n=3), A014107 (n=4), A326725 (n=5), A270710 (n=6).
Columns include A008585, A016933, A017329.
Cf. A139600.

Programs

  • Maple
    A := (n, k) -> n*(k - 1)*k/2 - k:
    seq(seq(A(n - k, k), k=0..n), n=0..11);
  • Python
    def A326728Row(n):
        x, y = 1, 1
        yield 0
        while True:
            yield -x
            x, y = x + y - n, y - n
    for n in range(8):
        R = A326728Row(n)
    print([next(R) for _ in range(11)])

A273894 Table T(n,k), n >= 0, k = 1..2^n, read by rows, giving coefficients of iterations of polynomial x^2-x: see Comments for precise definition.

Original entry on oeis.org

1, -1, 1, 1, 0, -2, 1, -1, 1, 2, -5, 2, 4, -4, 1, 1, 0, -4, 2, 12, -14, -20, 48, -14, -50, 60, -10, -28, 24, -8, 1, -1, 1, 4, -10, -8, 54, -24, -180, 270, 270, -960, 150, 2064, -2040, -2352, 5871, -1566, -7236, 8880, 120, -9120, 7980, 120, -5340, 4212, -756
Offset: 0

Views

Author

Robert Israel, Jun 02 2016

Keywords

Comments

Let p(0) = t, p(n) = p(n-1)^2 - p(n-1) for i >= 1.
T(n,k) is coefficient of t^k in p(n).
Rows sum to 0, except for row 0. - David A. Corneth, Jun 02 2016

Examples

			Table starts:
   1;
  -1, 1;
   1, 0, -2,  1;
  -1, 1,  2, -5,  2,   4,  -4,  1;
   1, 0, -4,  2, 12, -14, -20, 48, -14, -50, 60, -10, -28, 24, -8, 1;
  ...
		

Crossrefs

Programs

  • Maple
    P[0]:= t:
    for n from 1 to 8 do
      P[n]:= expand(P[n-1]^2 - P[n-1])
    od:
    seq(seq(coeff(P[n],t,j),j=1..2^n),n=0..8);
  • Mathematica
    CoefficientList[NestList[Expand[#^2-#]&, x, 5]/x, x] // Flatten (* Jean-François Alcover, Apr 29 2019 *)

Formula

T(n,k) = -T(n-1,k) + Sum_{j=1..k-1} T(n-1,j) T(n-1,k-j).
Column k is of the form
T(n,k) = b_k(n) + (-1)^n*c_k(n)
where b_k and c_k seem to be polynomials of degree floor(k/2) - 1 and floor((k-1)/2) respectively (except b_1 = 0).
Leading coefficient of b_k(n) + (-1)^n*c_k(n) seems to be
-(-2)^(k/2-2) - binomial(-3/2,k/2-1)*2^(k/2-2)*(-1)^n if k is even,
2^((k-1)/2)*binomial(-1/2,(k-1)/2)*(-1)^n if k is odd.
T(n,1) = (-1)^n = A033999(n).
T(n,2) = 1/2 + (-1)^n/2 = A000035(n)
T(n,3) = -1/2 + (-n + 1/2)*(-1)^n = -A137501(n).
T(n,4) = -n + 5/4 + (3*n/2 - 5/4)*(-1)^n
= n/2 if n is even, -5*(n-1)/2 if n is odd.
T(n,5) = 2*n - 11/4 + (3*n^2/2 - 5*n + 11/4)*(-1)^n
= 12*A161680(n/2) if n is even, -2*A270710((n-3)/2) if n >= 3 is odd.
T(n, 2^n) = 1 = A000012(n). - David A. Corneth, Jun 02 2016
Showing 1-5 of 5 results.