cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000442 a(n) = (n!)^3.

Original entry on oeis.org

1, 1, 8, 216, 13824, 1728000, 373248000, 128024064000, 65548320768000, 47784725839872000, 47784725839872000000, 63601470092869632000000, 109903340320478724096000000, 241457638684091756838912000000, 662559760549147780765974528000000, 2236139191853373760085164032000000000
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Permanent of upper right n X n corner of multiplication table (A003991). - Marc LeBrun, Dec 11 2003
a(n) is the number of set partitions of {1, 2, ..., 4n - 1, 4n} into blocks of size 4 in which the entries of each block mod 4 are distinct. For example, a(2) = 8 counts 1234-5678, 1678-2345, 1278-3456, 1346-2578, 1238-4567, 1467-2358, 1247-3568, 1368-2457. - David Callan, Mar 30 2007
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i, j) = sigma_3(gcd(i, j)) for 1 <= i,j <= n, and n > 0, where sigma_3 is A001158. - Enrique Pérez Herrero, Aug 13 2011

References

  • F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ

Crossrefs

Row n=3 of A225816.

Programs

Formula

a(n) = det(S(i+3, j), 1 <= i, j <= n), where S(n, k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
From Karol A. Penson, Jul 28 2013: (Start)
G.f. of hypergeometric type: sum(a(n)*z^n/(n!)^3, n = 0..infinity) = 1/(1-z);
Integral representation as n-th moment of a positive function w(x) on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation:
a(n) = int(x^n*w(x), x = 0..infinity), n >= 0, where w(x) = MeijerG([[], []], [[0, 0, 0]], []], x), w(0) = infinity, limit(w(x), x = infinity) = 0.
w(x) is monotonically decreasing over (0, infinity). The Meijer G function above cannot be represented by any other known special function. This solution of the Stieltjes moment problem is not unique.
Asymptotics: a(n) -> (1/16)*sqrt(2)*Pi^(3/2)*(32*n^2 + 8*n + 1)*(n)^(-1/2+3*n)*exp(-3*n), for n -> infinity. (End)
D-finite with recurrence: a(n) -n^3*a(n-1)=0. - R. J. Mathar, Feb 16 2020
From Amiram Eldar, Nov 09 2020: (Start)
a(n) = A000142(n)^3.
Sum_{n>=0} 1/a(n) = A271574. (End)
a(n) = [x^n] Product_{k=1..n} (1 + k^3*x). - Vaclav Kotesovec, Feb 19 2022

A217284 a(n) = Sum_{k=0..n} (n!/k!)^3.

Original entry on oeis.org

1, 2, 17, 460, 29441, 3680126, 794907217, 272653175432, 139598425821185, 101767252423643866, 101767252423643866001, 135452212975869985647332, 234061424022303335198589697, 514232948577000427431301564310, 1411055210895289172871491492466641, 4762311336771600958441283787074913376
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 30 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n!/k!)^3, {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, (n!/k!)^3); \\ Seiichi Manyama, May 02 2021

Formula

Recurrence: a(n) = (n+1)*(n^2-n+1)*a(n-1)-(n-1)^3*a(n-2).
a(n) ~ 2.12970254898330641813452361... * (n!)^3 = A271574 * (n!)^3.
a(n) = n^3 * a(n-1) + 1. - Seiichi Manyama, May 02 2021

A368769 a(n) = (n!)^3 * Sum_{k=1..n} 1/(k!)^3.

Original entry on oeis.org

0, 1, 9, 244, 15617, 1952126, 421659217, 144629111432, 74050105053185, 53982526583771866, 53982526583771866001, 71850742883000353647332, 124158083701824611102589697, 272775309892908670592389564310, 748495450346141392105516964466641
Offset: 0

Views

Author

Seiichi Manyama, Jan 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^3 Sum[1/(k!)^3,{k,n}],{n,0,20}] (* Harvey P. Dale, May 11 2025 *)
  • PARI
    a(n) = n!^3*sum(k=1, n, 1/k!^3);

Formula

a(0) = 0; a(n) = n^3 * a(n-1) + 1.
a(n) = A217284(n) - (n!)^3.
a(n) ~ (A271574 - 1) * (n!)^3. - Vaclav Kotesovec, Jan 05 2024

A348874 Decimal expansion of Sum_{k>=0} (-1)^k / (k!)^3.

Original entry on oeis.org

1, 2, 0, 4, 4, 2, 1, 3, 2, 3, 0, 1, 0, 1, 7, 6, 4, 6, 5, 6, 1, 3, 0, 0, 8, 3, 9, 6, 9, 4, 2, 1, 3, 3, 3, 9, 9, 8, 4, 7, 5, 7, 9, 9, 1, 7, 8, 5, 6, 9, 2, 9, 0, 6, 5, 9, 7, 9, 4, 4, 5, 9, 1, 5, 6, 0, 6, 6, 9, 7, 3, 0, 7, 4, 5, 4, 0, 9, 2, 7, 9, 8, 4, 1, 6, 7, 1, 9, 0, 8, 1, 4, 5, 1, 8, 6, 4, 0, 6, 5, 1, 7, 8, 4, 9, 0, 0, 4, 8, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 02 2021

Keywords

Examples

			0.1204421323010176465613008396942133399847579917856929...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1, 1}, -1], 10, 110] [[1]]
  • PARI
    sumalt(k=0, (-1)^k / (k!)^3) \\ Michel Marcus, Nov 02 2021
Showing 1-4 of 4 results.