A362227 a(n) = Product_{k=1..w(n)} p(k)^(S(n,k)-1), where set S(n,k) = row n of A272011 and w(n) = A000120(n) is the binary weight of n.
1, 2, 4, 12, 8, 24, 72, 360, 16, 48, 144, 720, 432, 2160, 10800, 75600, 32, 96, 288, 1440, 864, 4320, 21600, 151200, 2592, 12960, 64800, 453600, 324000, 2268000, 15876000, 174636000, 64, 192, 576, 2880, 1728, 8640, 43200, 302400, 5184, 25920, 129600, 907200, 648000, 4536000, 31752000, 349272000, 15552
Offset: 0
Examples
a(0) = 1 since 1 is the empty product. a(1) = 2 since 1 = 2^0, s = {0}, hence a(1) = prime(1)^(0+1) = 2^1 = 2. a(2) = 4 since 2 = 2^1, s = {1}, hence a(2) = 2^(1+1) = 4. a(3) = 12 since 3 = 2^1+2^0, s = {1,0}, hence a(3) = 2^2*3^1 = 12, etc. The table below relates first terms of this sequence greater than 1 to A272011 and A067255: n A272011(n) a(n) A067255(a(n)) ------------------------------------ 1 0 2 1 2 1 4 2 3 1,0 12 2,1 4 2 8 3 5 2,0 24 3,1 6 2,1 72 3,2 7 2,1,0 360 3,2,1 8 3 16 4 9 3,0 48 4,1 10 3,1 144 4,2 11 3,1,0 720 4,2,1 12 3,2 432 4,3 13 3,2,0 2160 4,3,1 14 3,2,1 10800 4,3,2 15 3,2,1,0 75600 4,3,2,1 16 4 32 5 ... This sequence appears below, seen as an irregular triangle T(m,j) delimited by 2^m where j = 1..2^(m-1) for m > 0: 1; 2; 4, 12; 8, 24, 72, 360; 16, 48, 144, 720, 432, 2160, 10800, 75600; ... T(m,1) = 2^m. T(m,2^(m-1)) = A006939(m) for m > 0.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16384
Programs
-
Mathematica
Array[Times @@ MapIndexed[Prime[First[#2]]^(#1 + 1) &, Length[#] - Position[#, 1][[All, 1]] ] &[IntegerDigits[#, 2]] &, 48, 0]
Comments