cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083420 a(n) = 2*4^n - 1.

Original entry on oeis.org

1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0

Views

Author

Paul Barry, Apr 29 2003

Keywords

Comments

Sum of divisors of 4^n. - Paul Barry, Oct 13 2005
Subsequence of A000069; A132680(a(n)) = A005408(n). - Reinhard Zumkeller, Aug 26 2007
If x = a(n), y = A000079(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
It seems that a(n) divides A001676(3+4n). Several other entries apparently have this sequence embedded in them, e.g., A014551, A168604, A213243, A213246-8, and A279872. - Tom Copeland, Dec 27 2016
To elaborate on Librandi's comment from 2014: all these numbers, even if prime in Z, are sure not to be prime in Z[sqrt(2)], since a(n) can at least be factored as ((2^(2n + 1) - 1) - (2^(2n) - 1)*sqrt(2))((2^(2n + 1) - 1) + (2^(2n) - 1)*sqrt(2)). For example, 7 = (3 - sqrt(2))(3 + sqrt(2)), 31 = (7 - 3*sqrt(2))(7 + 3*sqrt(2)), 127 = (15 - 7*sqrt(2))(15 + 7*sqrt(2)). - Alonso del Arte, Oct 17 2017
Largest odd factors of A147590. - César Aguilera, Jan 07 2020

Crossrefs

Cf. A083421, A000668 (primes in this sequence), A004171, A000244.
Cf. A000302.

Programs

Formula

G.f.: (1+2*x)/((1-x)*(1-4*x)).
E.g.f.: 2*exp(4*x)-exp(x).
With a leading zero, this is a(n) = (4^n - 2 + 0^n)/2, the binomial transform of A080925. - Paul Barry, May 19 2003
From Benoit Cloitre, Jun 18 2004: (Start)
a(n) = (-16^n/2)*B(2n, 1/4)/B(2n) where B(n, x) is the n-th Bernoulli polynomial and B(k) = B(k, 0) is the k-th Bernoulli number.
a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = (-4^n/2)*B(2*n, 1/2)/B(2*n). (End)
a(n) = A099393(n) + A020522(n) = A000302(n) + A024036(n). - Reinhard Zumkeller, Feb 07 2006
a(n) = Stirling2(2*(n+1), 2). - Zerinvary Lajos, Dec 06 2006
a(n) = 4*a(n-1) + 3 with n > 0, a(0) = 1. - Vincenzo Librandi, Dec 30 2010
a(n) = A001576(n+1) - 2*A001576(n). - Brad Clardy, Mar 26 2011
a(n) = 6*A002450(n) + 1. - Roderick MacPhee, Jul 06 2012
a(n) = A000203(A000302(n)). - Michel Marcus, Jan 20 2014
a(n) = Sum_{i = 0..n} binomial(2n+2, 2i). - Wesley Ivan Hurt, Mar 14 2015
a(n) = (1/4^n) * Sum_{k = 0..n} binomial(2*n+1,2*k)*9^k. - Peter Bala, Feb 06 2019
a(n) = A147590(n)/A000079(n). - César Aguilera, Jan 07 2020

A279118 Binary representation of the x-axis, from the left edge to the origin, (and also from the origin to the right edge) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 209", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 0, 111, 0, 11111, 0, 1111111, 0, 111111111, 0, 11111111111, 0, 1111111111111, 0, 111111111111111, 0, 11111111111111111, 0, 1111111111111111111, 0, 111111111111111111111, 0, 11111111111111111111111, 0, 1111111111111111111111111, 0
Offset: 0

Views

Author

Robert Price, Dec 21 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A279872.

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 209; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Chai Wah Wu, Aug 02 2021: (Start)
a(n) = 101*a(n-2) - 100*a(n-4) for n > 3.
G.f.: (10*x^2 + 1)/(100*x^4 - 101*x^2 + 1). (End)

A282413 Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 467", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 1, 7, 0, 31, 0, 127, 0, 511, 0, 2047, 0, 8191, 0, 32767, 0, 131071, 0, 524287, 0, 2097151, 0, 8388607, 0, 33554431, 0, 134217727, 0, 536870911, 0, 2147483647, 0, 8589934591, 0, 34359738367, 0, 137438953471, 0, 549755813887, 0, 2199023255551, 0
Offset: 0

Views

Author

Robert Price, Feb 14 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.
For n != 1, is a(n) = A279872(n)? - Bruno Berselli, Feb 15 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 467; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Feb 15 2017: (Start)
a(n) = 2^(n+1)-1 for n>1 and even.
a(n) = 0 for n>1 and odd.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
G.f.: (1 + x + 2*x^2 - 5*x^3 + 4*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
(End)

A282414 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 467", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 2, 7, 0, 31, 0, 127, 0, 511, 0, 2047, 0, 8191, 0, 32767, 0, 131071, 0, 524287, 0, 2097151, 0, 8388607, 0, 33554431, 0, 134217727, 0, 536870911, 0, 2147483647, 0, 8589934591, 0, 34359738367, 0, 137438953471, 0, 549755813887, 0, 2199023255551, 0
Offset: 0

Views

Author

Robert Price, Feb 14 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.
For n != 1, is a(n) = A279872(n)? - Bruno Berselli, Feb 15 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 467; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i ,1, stages - 1}]

Formula

Conjectures from Colin Barker, Feb 15 2017: (Start)
a(n) = 2^(n+1)-1 for n>1 and even.
a(n) = 0 for n>1 and odd.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
G.f.: (1 + 2*x + 2*x^2 - 10*x^3 + 8*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
(End)
Equivalent conjecture: a(n) = A282413(n) for n>=2. - R. J. Mathar, Jun 21 2025
Showing 1-4 of 4 results.