cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A289120 a(n) is the number of odd integers divisible by 7 in ]2*(n-1)^2, 2*n^2[.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 2, 2, 3, 2, 3, 4, 3, 4, 4, 5, 4, 5, 6, 5, 6, 6, 7, 6, 7, 8, 7, 8, 8, 9, 8, 9, 10, 9, 10, 10, 11, 10, 11, 12, 11, 12, 12, 13, 12, 13, 14, 13, 14, 14, 15, 14, 15, 16, 15, 16, 16, 17, 16, 17, 18, 17, 18, 18, 19, 18, 19, 20, 19, 20, 20, 21, 20, 21, 22, 21, 22, 22, 23, 22, 23, 24, 23, 24, 24, 25, 24, 25, 26, 25, 26, 26, 27, 26, 27, 28, 27, 28, 28, 29
Offset: 0

Views

Author

Ralf Steiner, Jun 25 2017

Keywords

Comments

This sequence has the form (0+2k,0+2k,1+2k,0+2k,1+2k,2+2k,1+2k) for k>=0.

Crossrefs

Programs

  • Mathematica
    Table[Count[Mod[Table[2 ((n - 1)^2 + k) - 1, {k, 1, 2 n - 1}], 7],
      0], {n, 0, 100}]
  • PARI
    concat(vector(2), Vec(x^2*(1 + x)*(1 - x + x^2)^2 / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^100))) \\ Colin Barker, Jul 02 2017

Formula

From Colin Barker, Jul 02 2017: (Start)
G.f.: x^2*(1 + x)*(1 - x + x^2)^2 / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-1) + a(n-7) - a(n-8) for n>7.
(End)

A289122 a(n) is number of odd integers divisible by 11 in the interval ]2*(n-1)^2, 2*n^2[.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15
Offset: 0

Views

Author

Ralf Steiner, Jun 25 2017

Keywords

Comments

This sequence has the form (0+2k,0+2k,0+2k,1+2k,0+2k,1+2k,1+2k,1+2k,2+2k, 1+2k,2+2k) for k>=0.

Crossrefs

Programs

  • Mathematica
    Table[Count[Mod[Table[2((n-1)^2 +k) -1,{k,1,2n-1}],11],0],{n,0,50}]
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,1,-1},{0,0,0,1,0,1,1,1,2,1,2,2},90] (* Harvey P. Dale, Aug 24 2017 *)
  • PARI
    a(n) = sum(k=2*(n-1)^2, 2*n^2, ((k % 2) && ((k % 11) == 0))); \\ Michel Marcus, Jun 26 2017

Formula

a(n + 11*k) = a(n) + 2*k. - David A. Corneth, Jun 25 2017
G.f.: (x^10-x^9+x^8+x^5-x^4+x^3)/(x^12-x^11-x+1). - Alois P. Heinz, Jun 26 2017

A289133 a(n) is the number of odd integers divisible by 9 in ]2*(n-1)^2, 2*n^2[.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18
Offset: 0

Views

Author

Ralf Steiner, Jun 25 2017

Keywords

Comments

This sequence has the form (0+2k,0+2k,0+2k,1+2k,1+2k,1+2k,1+2k,1+2k,2+2k) for k>=0.

Crossrefs

Programs

  • Mathematica
    Table[Count[Mod[Table[2((n-1)^2 +k)-1,{k,1,2 n-1}],9],0],{n,0,50}]
  • PARI
    a(n) = sum(k=2*(n-1)^2, 2*n^2, ((k % 2) && ((k % 9) == 0))); \\ Michel Marcus, Jun 26 2017

Formula

a(n + 9*k) = a(n) + 2*k.
G.f.: (x^8+x^3)/(x^10-x^9-x+1). - Alois P. Heinz, Jun 26 2017

Extensions

More terms from Michel Marcus, Jun 26 2017

A289139 a(n) is the number of odd integers divisible by 7 in ]4*(n-1)^2, 4*n^2[.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 10, 10, 11, 12, 12, 13, 14, 14, 14, 15, 16, 16, 17, 18, 18, 18, 19, 20, 20, 21, 22, 22, 22, 23, 24, 24, 25, 26, 26, 26, 27, 28, 28, 29, 30, 30, 30, 31, 32, 32, 33, 34, 34, 34, 35, 36, 36, 37, 38, 38, 38, 39, 40, 40
Offset: 0

Views

Author

Ralf Steiner, Jun 26 2017

Keywords

Comments

This sequence has the form (0+4k,0+4k,1+4k,2+4k,2+4k,2+4k,3+4k) for k>=0.

Crossrefs

Programs

  • Mathematica
    Table[Count[Mod[Table[2(2(n-1)^2 +k)-1, {k,1,4 n-2}],7],0], {n,0,100}]
    LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,0,1,2,2,2,3,4},80] (* Harvey P. Dale, Aug 10 2025 *)

Formula

a(n + 7*k) = a(n) + 4*k.
G.f.: (x^7+x^6+x^3+x^2)/(x^8-x^7-x+1). - Alois P. Heinz, Jun 26 2017

A008738 a(n) = floor((n^2 + 1)/5).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 7, 10, 13, 16, 20, 24, 29, 34, 39, 45, 51, 58, 65, 72, 80, 88, 97, 106, 115, 125, 135, 146, 157, 168, 180, 192, 205, 218, 231, 245, 259, 274, 289, 304, 320, 336, 353, 370, 387, 405, 423, 442, 461, 480, 500, 520, 541, 562, 583, 605, 627, 650, 673
Offset: 0

Views

Author

Keywords

Comments

Without initial zeros, Molien series for 3-dimensional group [2+,n] = 2*(n/2).

Crossrefs

Cf. A011858. Partial sums of A288156.

Programs

  • GAP
    List([0..60], n-> Int((n^2 + 1)/5)); # G. C. Greubel, Aug 03 2019
  • Magma
    [(n^2+1) div 5: n in [0..60]]; // Bruno Berselli, Oct 28 2011
    
  • Mathematica
    Floor[(Range[0,60]^2 + 1)/5] (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    a(n)=(n^2+1)\5;
    
  • Sage
    [floor((n^2+1)/5) for n in (0..60)] # G. C. Greubel, Aug 03 2019
    

Formula

G.f.: x^2*(1+x^3)/((1-x)^2*(1-x^5)) = x^2*(1+x)*(1-x+x^2)/( (1-x)^3 *(1+x+x^2+x^3+x^4) ).
a(n+2)= A249020(n) + A249020(n-1). - R. J. Mathar, Aug 11 2021

Extensions

More terms from Philip Mummert (s1280900(AT)cedarville.edu), May 10 2000

A289195 a(n) is the number of odd integers divisible by 5 in ]4*(n-1)^2, 4*n^2[.

Original entry on oeis.org

0, 0, 2, 2, 2, 4, 4, 6, 6, 6, 8, 8, 10, 10, 10, 12, 12, 14, 14, 14, 16, 16, 18, 18, 18, 20, 20, 22, 22, 22, 24, 24, 26, 26, 26, 28, 28, 30, 30, 30, 32, 32, 34, 34, 34, 36, 36, 38, 38, 38, 40, 40, 42, 42, 42, 44, 44, 46, 46, 46, 48, 48, 50, 50, 50, 52, 52, 54
Offset: 0

Views

Author

Ralf Steiner, Jun 28 2017

Keywords

Comments

This sequence has the form (0+4k,0+4k,2+4k,2+4k,2+4k) for k>=0.

Crossrefs

Programs

  • Mathematica
    Table[Count[Mod[Table[2(2(n-1)^2+k)-1,{k,1,4 n-2}],5],0],{n,0,50}]
  • PARI
    concat(vector(2), Vec(2*x^2*(1 + x)*(1 - x + x^2) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ Colin Barker, Jul 04 2017

Formula

a(n + 5*k) = a(n) + 4*k.
From Colin Barker, Jul 04 2017: (Start)
G.f.: 2*x^2*(1 + x)*(1 - x + x^2) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6) for n>5.
(End)

A289199 a(n) is the number of odd integers divisible by 13 in the open interval (12*(n-1)^2, 12*n^2).

Original entry on oeis.org

0, 0, 2, 2, 3, 5, 5, 6, 7, 7, 9, 10, 10, 12, 12, 14, 14, 15, 17, 17, 18, 19, 19, 21, 22, 22, 24, 24, 26, 26, 27, 29, 29, 30, 31, 31, 33, 34, 34, 36, 36, 38, 38, 39, 41, 41, 42, 43, 43, 45, 46, 46, 48, 48, 50, 50, 51, 53, 53, 54, 55, 55, 57, 58, 58, 60, 60, 62, 62, 63, 65
Offset: 0

Views

Author

Ralf Steiner, Jun 28 2017

Keywords

Comments

This sequence has the form (0+12k, 0+12k, 2+12k, 2+12k, 3+12k, 5+12k, 5+12k, 6+12k, 7+12k, 7+12k, 9+12k, 10+12k, 10+12k) for k >= 0.
Theorems: A) Generally for an interval (2*m*(n-1)^2,2*m*n^2) and a divisor d with 2*m < d there is a unique d-length form (e_i+2*m*k)_{i=0..d-1, k>=0} with e_i in [0,2*m]; here m = 6, d = 13.
B) Sum_{i=0..d-1}e_i = m*(d-2); here 66 = 6*(13-2).
Proof:
A) In d consecutive intervals
(2*m*(n-1)^2,2*m*(n+2)^2) there are m*d*(2*k+d) consecutive odd numbers and therefore m*(2*k+d) multiples of d where k=floor((n-1)/d).
B) With initial value a(0)=0 we have a(d)=2*m and thus Sum_{i=0..d-1} e_i = Sum_{i=1..d}a(i)-a(d) = m(2*0+d)-2*m = m*(d-2). Q.E.D.

Crossrefs

Programs

  • Mathematica
    Table[Count[Mod[Table[2(6(n-1)^2 +k)-1,{k,12 n-6}],13],0],{n,0,70}]
  • PARI
    a(n)=(12*n^2+12)\26 - (12*n^2-24*n+25)\26 \\ Charles R Greathouse IV, Jun 29 2017
    
  • PARI
    concat(vector(2), Vec(x^2*(1 + x)*(1 - x + x^2)*(2 + x^2 + x^6 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)) + O(x^100))) \\ Colin Barker, Jul 03 2017

Formula

a(n + 13*k) = a(n) + 12*k.
a(n) = 12n/13 + O(1). - Charles R Greathouse IV, Jun 29 2017
From Colin Barker, Jul 03 2017: (Start)
G.f.: x^2*(1 + x)*(1 - x + x^2)*(2 + x^2 + x^6 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)).
a(n) = a(n-1) + a(n-13) - a(n-14) for n>13.
(End)
Showing 1-7 of 7 results.