cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A002033 Number of perfect partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112
Offset: 0

Views

Author

Keywords

Comments

A perfect partition of n is one which contains just one partition of every number less than n when repeated parts are regarded as indistinguishable. Thus 1^n is a perfect partition for every n; and for n = 7, 4 1^3, 4 2 1, 2^3 1 and 1^7 are all perfect partitions. [Riordan]
Also number of ordered factorizations of n+1, see A074206.
Also number of gozinta chains from 1 to n (see A034776). - David W. Wilson
a(n) is the permanent of the n X n matrix with (i,j) entry = 1 if j|i+1 and = 0 otherwise. For n=3 the matrix is {{1, 1, 0}, {1, 0, 1}, {1, 1, 0}} with permanent = 2. - David Callan, Oct 19 2005
Appears to be the number of permutations that contribute to the determinant that gives the Moebius function. Verified up to a(9). - Mats Granvik, Sep 13 2008
Dirichlet inverse of A153881 (assuming offset 1). - Mats Granvik, Jan 03 2009
Equals row sums of triangle A176917. - Gary W. Adamson, Apr 28 2010
A partition is perfect iff it is complete (A126796) and knapsack (A108917). - Gus Wiseman, Jun 22 2016
a(n) is also the number of series-reduced planted achiral trees with n + 1 unlabeled leaves, where a rooted tree is series-reduced if all terminal subtrees have at least two branches, and achiral if all branches directly under any given node are equal. Also Moebius transform of A067824. - Gus Wiseman, Jul 13 2018

Examples

			n=0: 1 (the empty partition)
n=1: 1 (1)
n=2: 1 (11)
n=3: 2 (21, 111)
n=4: 1 (1111)
n=5: 3 (311, 221, 11111)
n=6: 1 (111111)
n=7: 4 (4111, 421, 2221, 1111111)
From _Gus Wiseman_, Jul 13 2018: (Start)
The a(11) = 8 series-reduced planted achiral trees with 12 unlabeled leaves:
  (oooooooooooo)
  ((oooooo)(oooooo))
  ((oooo)(oooo)(oooo))
  ((ooo)(ooo)(ooo)(ooo))
  ((oo)(oo)(oo)(oo)(oo)(oo))
  (((ooo)(ooo))((ooo)(ooo)))
  (((oo)(oo)(oo))((oo)(oo)(oo)))
  (((oo)(oo))((oo)(oo))((oo)(oo)))
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126, see #27.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 141.
  • D. E. Knuth, The Art of Computer Programming, Pre-Fasc. 3b, Sect. 7.2.1.5, no. 67, p. 25.
  • P. A. MacMahon, The theory of perfect partitions and the compositions of multipartite numbers, Messenger Math., 20 (1891), 103-119.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 123-124.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as A074206, up to the offset and initial term there.
Cf. A176917.
For parity see A008966.

Programs

  • Maple
    a := array(1..150): for k from 1 to 150 do a[k] := 0 od: a[1] := 1: for j from 2 to 150 do for m from 1 to j-1 do if j mod m = 0 then a[j] := a[j]+a[m] fi: od: od: for k from 1 to 150 do printf(`%d,`,a[k]) od: # James Sellers, Dec 07 2000
    # alternative
    A002033 := proc(n)
        option remember;
        local a;
        if n <= 2 then
            return 1;
        else
            a := 0 ;
            for i from 0 to n-1 do
                if modp(n+1,i+1) = 0 then
                    a := a+procname(i);
                end if;
            end do:
        end if;
        a ;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = a /@ Most[Divisors[n]] // Total; a /@ Range[96]  (* Jean-François Alcover, Apr 06 2011, updated Sep 23 2014. NOTE: This produces A074206(n) = a(n-1). - M. F. Hasler, Oct 12 2018 *)
  • PARI
    A002033(n) = if(n,sumdiv(n+1,i,if(i<=n,A002033(i-1))),1) \\ Michael B. Porter, Nov 01 2009, corrected by M. F. Hasler, Oct 12 2018
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A002033(n):
        if n <= 1:
            return 1
        return sum(A002033(i-1) for i in divisors(n+1,generator=True) if i <= n) # Chai Wah Wu, Jan 12 2022

Formula

From David Wasserman, Nov 14 2006: (Start)
a(n-1) = Sum_{i|d, i < n} a(i-1).
a(p^k-1) = 2^(k-1).
a(n-1) = A067824(n)/2 for n > 1.
a(A122408(n)-1) = A122408(n)/2. (End)
a(A025487(n)-1) = A050324(n). - R. J. Mathar, May 26 2017
a(n) = (A253249(n+1)+1)/4, n > 0. - Geoffrey Critzer, Aug 19 2020

Extensions

Edited by M. F. Hasler, Oct 12 2018

A300273 Sorted list of Heinz numbers of collapsible integer partitions.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 40, 41, 43, 47, 48, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 108, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2018

Keywords

Comments

A positive integer is in this sequence iff it can be reduced to a prime number by a sequence of collapses, where a collapse is a replacement of prime(n)^k with prime(n*k) in a number's prime factorization (k > 1).

Examples

			A sequence of collapses is 84 -> 63 -> 49 -> 19 corresponding to the sequence of partitions (4211) -> (422) -> (44) -> (8). Hence 84 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    repcaps[q_]:=Union[{q},If[SquareFreeQ[q],{},Union@@repcaps/@Union[Times[q/#,Prime[Plus@@primeMS[#]]]&/@Select[Rest[Divisors[q]],!PrimeQ[#]&&PrimePowerQ[#]&]]]];
    Select[Range[200],MemberQ[repcaps[#],_?PrimeQ]&]

A305551 Number of partitions of partitions of n where all partitions have the same sum.

Original entry on oeis.org

1, 1, 3, 4, 9, 8, 22, 16, 43, 41, 77, 57, 201, 102, 264, 282, 564, 298, 1175, 491, 1878, 1509, 2611, 1256, 7872, 2421, 7602, 8026, 16304, 4566, 38434, 6843, 48308, 41078, 56582, 28228, 221115, 21638, 146331, 208142, 453017, 44584, 844773, 63262, 1034193, 1296708
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Examples

			The a(4) = 9 partitions of partitions where all partitions have the same sum:
(4), (31), (22), (211), (1111),
(2)(2), (2)(11), (11)(11),
(1)(1)(1)(1).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[PartitionsP[n/k]+k-1,k],{k,Divisors[n]}],{n,60}]
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, binomial(numbpart(n/d) + d - 1, d)))} \\ Andrew Howroyd, Jun 22 2018

Formula

a(n) = Sum_{d|n} binomial(A000041(n/d) + d - 1, d).

A298422 Number of rooted trees with n nodes in which all positive outdegrees are the same.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 20, 2, 26, 12, 53, 2, 120, 2, 223, 43, 454, 2, 1100, 11, 2182, 215, 4902, 2, 11446, 2, 24744, 1242, 56014, 58, 131258, 2, 293550, 7643, 676928, 2, 1582686, 2, 3627780, 49155, 8436382, 2, 19809464, 50, 46027323, 321202
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums of A298426.

Examples

			The a(9) = 6 trees: ((((((((o)))))))), (o(o(o(oo)))), (o((oo)(oo))), ((oo)(o(oo))), (ooo(oooo)), (oooooooo).
		

Crossrefs

Programs

  • Mathematica
    srut[n_]:=srut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[srut/@c]]]/@Select[IntegerPartitions[n-1],Function[ptn,And@@(Divisible[#-1,Length[ptn]]&/@ptn)]],SameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
    Table[srut[n]//Length,{n,20}]

Formula

a(n) = 2 <=> n in {A008864}. - Alois P. Heinz, Jan 20 2018

Extensions

a(44)-a(52) from Alois P. Heinz, Jan 20 2018

A381455 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into a multiset of constant multisets.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A000688 at a(144) = 9, A000688(144) = 10.
First differs from A295879 at a(128) = 15, A295879(128) = 13.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into prime powers > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Multisets of constant multisets are generally not transitive. For example, we have arrows: {{1,1},{2}}: {1,1,2} -> {2,2} and {{2,2}}: {2,2} -> {4}, but there is no multiset of constant multisets {1,1,2} -> {4}.

Examples

			The prime indices of 36 are {1,1,2,2}, with the following 4 partitions into a multiset of constant multisets:
  {{1,1},{2,2}}
  {{1},{1},{2,2}}
  {{2},{2},{1,1}}
  {{1},{1},{2},{2}}
with block-sums: {2,4}, {1,1,4}, {2,2,2}, {1,1,2,2}, which are all different, so a(36) = 4.
The prime indices of 144 are {1,1,1,1,2,2}, with the following 10 partitions into a multiset of constant multisets:
  {{2,2},{1,1,1,1}}
  {{1},{2,2},{1,1,1}}
  {{2},{2},{1,1,1,1}}
  {{1,1},{1,1},{2,2}}
  {{1},{1},{1,1},{2,2}}
  {{1},{2},{2},{1,1,1}}
  {{2},{2},{1,1},{1,1}}
  {{1},{1},{1},{1},{2,2}}
  {{1},{1},{2},{2},{1,1}}
  {{1},{1},{1},{1},{2},{2}}
with block-sums: {4,4}, {1,3,4}, {2,2,4}, {2,2,4}, {1,1,2,4}, {1,2,2,3}, {2,2,2,2}, {1,1,1,1,4}, {1,1,2,2,2}, {1,1,1,1,2,2}, of which 9 are distinct, so a(144) = 9.
The a(n) partitions for n = 4, 8, 16, 32, 36, 64, 72, 128:
  (2)   (3)    (4)     (5)      (42)    (6)       (43)     (7)
  (11)  (21)   (22)    (32)     (222)   (33)      (322)    (43)
        (111)  (31)    (41)     (411)   (42)      (421)    (52)
               (211)   (221)    (2211)  (51)      (2221)   (61)
               (1111)  (311)            (222)     (4111)   (322)
                       (2111)           (321)     (22111)  (331)
                       (11111)          (411)              (421)
                                        (2211)             (511)
                                        (3111)             (2221)
                                        (21111)            (3211)
                                        (111111)           (4111)
                                                           (22111)
                                                           (31111)
                                                           (211111)
                                                           (1111111)
		

Crossrefs

Before taking sums we had A000688.
Positions of 1 are A005117.
There is a chain from the prime indices of n to a singleton iff n belongs to A300273.
The lower version is A381453.
For distinct blocks we have A381715, before sum A050361.
For distinct block-sums we have A381716, before sums A381635 (zeros A381636).
Other multiset partitions of prime indices:
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
- For set systems (A050326) see A381441 (upper).
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For set systems with distinct sums (A381633) see A381634, A293243.
More on multiset partitions into constant blocks: A006171, A279784, A295935.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]

Formula

a(s) = 1 for any squarefree number s.
a(p^k) = A000041(k) for any prime p.

A289079 Number of orderless same-trees of weight n with all leaves equal to 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 13, 1, 3, 3, 22, 1, 16, 1, 15, 3, 3, 1, 151, 2, 3, 6, 17, 1, 41, 1, 334, 3, 3, 3, 637, 1, 3, 3, 275, 1, 56, 1, 21, 19, 3, 1, 15591, 2, 27, 3, 23, 1, 902, 3, 516, 3, 3, 1, 7858, 1, 3, 21, 69109, 3, 98, 1, 27, 3, 67, 1, 811756, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2017

Keywords

Comments

a(n) is also the number of orderless same-trees of weight n with all leaves greater than 1.

Examples

			The a(12)=13 orderless same-trees with all leaves greater than 1 are: ((33)(33)), ((33)(222)), ((33)6), ((222)(222)), ((222)6), (66), ((22)(22)(22)), ((22)(22)4), ((22)44), (444), (3333), (222222), 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1, add(
          binomial(a(n/d)+d-1, d), d=divisors(n) minus {1}))
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Jul 05 2017
  • Mathematica
    a[n_]:=If[n===1,1,Sum[Binomial[a[n/d]+d-1,d],{d,Rest[Divisors[n]]}]];
    Array[a,100]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = sumdiv(n, d, binomial(v[n/d]+d-1, d))); v} \\ Andrew Howroyd, Aug 20 2018
    
  • Python
    from sympy import divisors, binomial
    l=[0, 1]
    for n in range(2, 101): l+=[sum([binomial(l[n//d] + d - 1, d) for d in divisors(n)[1:]]), ]
    l[1:] # Indranil Ghosh, Jul 06 2017

Formula

a(1) = 1, a(n>1) = Sum_{d|n, d>1} binomial(a(n/d)+d-1, d).

A061260 G.f.: Product_{k>=1} (1-y*x^k)^(-numbpart(k)), where numbpart(k) = number of partitions of k, cf. A000041.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 6, 2, 1, 7, 11, 6, 2, 1, 11, 23, 15, 6, 2, 1, 15, 40, 32, 15, 6, 2, 1, 22, 73, 67, 37, 15, 6, 2, 1, 30, 120, 134, 79, 37, 15, 6, 2, 1, 42, 202, 255, 172, 85, 37, 15, 6, 2, 1, 56, 320, 470, 348, 187, 85, 37, 15, 6, 2, 1, 77, 511, 848, 697, 397, 194, 85, 37, 15, 6, 2, 1
Offset: 1

Views

Author

Vladeta Jovovic, Apr 23 2001

Keywords

Comments

Multiset transformation of A000041. - R. J. Mathar, Apr 30 2017
Number of orderless twice-partitions of n of length k. A twice-partition of n is a choice of a partition of each part in a partition of n. The T(5,3) = 6 orderless twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(11)(1). - Gus Wiseman, Mar 23 2018

Examples

			:  1;
:  2,   1;
:  3,   2,   1;
:  5,   6,   2,   1;
:  7,  11,   6,   2,  1;
: 11,  23,  15,   6,  2,  1;
: 15,  40,  32,  15,  6,  2,  1;
: 22,  73,  67,  37, 15,  6,  2, 1;
: 30, 120, 134,  79, 37, 15,  6, 2, 1;
: 42, 202, 255, 172, 85, 37, 15, 6, 2, 1;
		

Crossrefs

Row sums: A001970, first column: A000041.
T(2,n) gives A061261,

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*binomial(
           combinat[numbpart](i)+j-1, j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[PartitionsP[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]];
    T[n_, k_] := b[n, n, k];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 17 2018, after Alois P. Heinz *)

A298426 Regular triangle where T(n,k) is number of k-ary rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 11, 4, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 23, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums are A298422.

Examples

			Triangle begins:
1
0  1
0  1  1
0  1  0  1
0  1  1  0  1
0  1  0  0  0  1
0  1  2  1  0  0  1
0  1  0  0  0  0  0  1
0  1  3  0  1  0  0  0  1
0  1  0  2  0  0  0  0  0  1
0  1  6  0  0  1  0  0  0  0  1
0  1  0  0  0  0  0  0  0  0  0  1
0  1  11 4  2  0  1  0  0  0  0  0  1
0  1  0  0  0  0  0  0  0  0  0  0  0  1
0  1  23 0  0  0  0  1  0  0  0  0  0  0  1
0  1  0  8  0  2  0  0  0  0  0  0  0  0  0  1
		

Crossrefs

Programs

  • Mathematica
    nn=16;
    arut[n_,k_]:=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[arut[#,k]&/@c]]]/@Select[IntegerPartitions[n-1],Length[#]===k&]]
    Table[arut[n,k]//Length,{n,nn},{k,0,n-1}]

A316782 Number of achiral tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2018

Keywords

Comments

A factorization of n is a finite nonempty multiset of positive integers greater than 1 with product n. An achiral tree-factorization of n is either (case 1) the number n itself or (case 2) a finite constant multiset of two or more achiral tree-factorizations, one of each factor in a factorization of n.
a(n) is also the number of ways to write n as a left-nested power-tower ((a^b)^c)^... of positive integers greater than one. For example, the a(64) = 6 ways are 64, 8^2, 4^3, 2^6, (2^3)^2, (2^2)^3.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(1296) = 4 achiral tree-factorizations are 1296, (36*36), (6*6*6*6), ((6*6)*(6*6)).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[a[d],{d,n^(1/Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]])}];
    Array[a,100]
  • PARI
    a(n)={my(z, e=ispower(n,,&z)); 1 + if(e, sumdiv(e, d, if(dAndrew Howroyd, Nov 18 2018

Formula

a(n) = 1 + Sum_{n = d^k, k>1} a(d).
a(p^n) = A067824(n) for prime p. - Andrew Howroyd, Nov 18 2018

A291441 Matula-Goebel numbers of orderless same-trees with all leaves equal to 1.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 256, 343, 361, 512, 1024, 2048, 2401, 2809, 4096, 6859, 8192, 12031, 16384, 16807, 17161, 32768, 51529, 65536, 96721, 117649, 130321, 131072, 148877, 262144, 516961, 524288, 637643, 718099, 757907, 823543, 1048576, 2097152, 2248091
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2017

Keywords

Comments

See A289078 for the definition of orderless same-tree.

Examples

			a(20)=12031 corresponds to the following same-tree: {{1,1,1,1},{{1,1},{1,1}}}.
		

Crossrefs

Programs

  • Mathematica
    nn=200000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    leafcount[n_]:=If[n===1,1,With[{m=primeMS[n]},If[Length[m]===1,leafcount[First[m]],Total[leafcount/@m]]]];
    sameQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]>1,SameQ@@leafcount/@m,And@@sameQ/@m]]];
    Select[Range[nn],sameQ]

Extensions

More terms from Jinyuan Wang, Jun 21 2020
Showing 1-10 of 27 results. Next