A064618
Stirling transform of (n!)^2.
Original entry on oeis.org
1, 1, 5, 49, 821, 21121, 775205, 38516689, 2490976661, 203419086241, 20474978755205, 2490729330118129, 360263844701062901, 61114158974786823361, 12017074366801186956005, 2711409826920884006692369, 695820350706240448128979541, 201526362605605903609254528481
Offset: 0
-
a:= n-> add(Stirling2(n, k)*(k!^2), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 21 2012
-
Table[Sum[(k!)^2*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 10 2014 *)
-
/* By Vladeta Jovovic's formula: */
{a(n) = my(X=x+x*O(x^n)); n!*polcoeff( sum(m=0,n, m!*(exp(X)-1)^m), n)} /* Paul D. Hanna, Feb 15 2012 */
A192554
a(n) = Sum_{k=0..n} abs(Stirling1(n,k))*(-1)^(n-k)*k!^2.
Original entry on oeis.org
1, 1, 3, 26, 398, 9724, 344236, 16663968, 1056631824, 84962783664, 8446120969104, 1016998946575776, 145848462866589600, 24562489788256472064, 4799789988678066147840, 1077128972416478325901824, 275111625956753684599202304
Offset: 0
-
Table[Sum[Abs[StirlingS1[n,k]](-1)^(n-k)k!^2,{k,0,n}],{n,0,100}]
Table[Sum[StirlingS1[n,k] * k!^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 05 2021 *)
-
makelist(sum(abs(stirling1(n,k))*(-1)^(n-k)*k!^2,k,0,n),n,0,24);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, k!*log(1+x)^k))) \\ Seiichi Manyama, Apr 22 2022
A385751
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * (n!/k!)^2.
Original entry on oeis.org
1, 1, 5, 100, 5137, 539851, 101035441, 30669875230, 14117057058945, 9364637252286181, 8603755430968248301, 10603853731438585516856, 17077610933602804111318705, 35160631271792580418277658415, 90839446923946068488317221868825, 289828370988497912073923950177143826, 1126236403418687405801564385561640043521
Offset: 0
-
Table[Sum[Abs[StirlingS1[n, k]] (n!/k!)^2, {k, 0, n}], {n, 0, 16}]
nmax = 16; CoefficientList[Series[Sum[(-Log[1 - x])^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3
A382805
a(n) = Sum_{k=0..n} (-1)^(n-k) * (Stirling1(n,k) * k!)^2.
Original entry on oeis.org
1, 1, 3, 4, -272, -8524, -96596, 9634752, 983055168, 36429411456, -4303305703296, -1051644384152064, -89651253435644160, 10632887072757561600, 5599203549778990667520, 914684633796830925275136, -89559567563652079025946624, -104514775371103880549281775616
Offset: 0
-
Table[Sum[(-1)^(n - k) (StirlingS1[n, k] k!)^2, {k, 0, n}], {n, 0, 17}]
Table[(n!)^2 SeriesCoefficient[1/(1 + Log[1 + x] Log[1 - y]), {x, 0, n}, {y, 0, n}], {n, 0, 17}]
Showing 1-4 of 4 results.
Comments