cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A345958 Numbers whose prime indices have reverse-alternating sum 1.

Original entry on oeis.org

2, 6, 8, 15, 18, 24, 32, 35, 50, 54, 60, 72, 77, 96, 98, 128, 135, 140, 143, 150, 162, 200, 216, 221, 240, 242, 288, 294, 308, 315, 323, 338, 375, 384, 392, 437, 450, 486, 512, 540, 560, 572, 578, 600, 648, 667, 693, 722, 726, 735, 800, 864, 875, 882, 884, 899
Offset: 1

Views

Author

Gus Wiseman, Jul 11 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. Of course, the reverse-alternating sum of prime indices is also the alternating sum of reversed prime indices.
Also numbers with exactly one odd conjugate prime index. Conjugate prime indices are listed by A321650, ranked by A122111.

Examples

			The initial terms and their prime indices:
   2: {1}
   6: {1,2}
   8: {1,1,1}
  15: {2,3}
  18: {1,2,2}
  24: {1,1,1,2}
  32: {1,1,1,1,1}
  35: {3,4}
  50: {1,3,3}
  54: {1,2,2,2}
  60: {1,1,2,3}
  72: {1,1,1,2,2}
  77: {4,5}
  96: {1,1,1,1,1,2}
  98: {1,4,4}
		

Crossrefs

The k > 0 version is A000037.
These multisets are counted by A000070.
The k = 0 version is A000290, counted by A000041.
The version for unreversed-alternating sum is A001105.
These partitions are counted by A035363.
These are the positions of 1's in A344616.
The k = 2 version is A345961, counted by A120452.
A000984/A345909/A345911 count/rank compositions with alternating sum 1.
A001791/A345910/A345912 count/rank compositions with alternating sum -1.
A088218 counts compositions with alternating sum 0, ranked by A344619.
A025047 counts wiggly compositions.
A027187 counts partitions with reverse-alternating sum <= 0.
A056239 adds up prime indices, row sums of A112798.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices.
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.
A344607 counts partitions with reverse-alternating sum >= 0.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[100],sats[primeMS[#]]==1&]

A325040 Heinz numbers of integer partitions with the same product of parts as their conjugate.

Original entry on oeis.org

1, 2, 6, 9, 20, 30, 49, 56, 70, 75, 81, 84, 90, 125, 176, 182, 210, 264, 350, 416, 441, 532, 540, 546, 624, 660, 735, 910, 1088, 1100, 1260, 1378, 1386, 1443, 1520, 1560, 1624, 1632, 1715, 2100, 2310, 2401, 2405, 2432, 2489, 2600, 3024, 3267, 3276, 3648, 3744
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2019

Keywords

Comments

For example, 182 is the Heinz number of (6,4,1) with product 24 and conjugate (3,2,2,2,1,1) with product also 24.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k).
The enumeration of these partitions by sum is given by A325039.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    6: {1,2}
    9: {2,2}
   20: {1,1,3}
   30: {1,2,3}
   49: {4,4}
   56: {1,1,1,4}
   70: {1,3,4}
   75: {2,3,3}
   81: {2,2,2,2}
   84: {1,1,2,4}
   90: {1,2,2,3}
  125: {3,3,3}
  176: {1,1,1,1,5}
  182: {1,4,6}
  210: {1,2,3,4}
  264: {1,1,1,2,5}
  350: {1,3,3,4}
  416: {1,1,1,1,1,6}
		

Crossrefs

Programs

  • Mathematica
    priptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Times@@priptn[#]==Times@@conj[priptn[#]]&]

A321648 Number of permutations of the conjugate of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 3, 1, 1, 2, 1, 3, 6, 5, 1, 2, 1, 6, 1, 4, 1, 6, 1, 1, 10, 7, 4, 2, 1, 8, 15, 3, 1, 12, 1, 5, 3, 9, 1, 2, 1, 3, 21, 6, 1, 2, 10, 4, 28, 10, 1, 6, 1, 11, 6, 1, 20, 20, 1, 7, 36, 12, 1, 2, 1, 12, 3, 8, 5, 30, 1, 3, 1, 13
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(42) = 12 permutations: (3211), (3121), (3112), (2311), (2131), (2113), (1321), (1312), (1231), (1213), (1132), (1123).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Permutations[conj[primeMS[n]]]],{n,50}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From A008480
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A321648(n) = A008480(A122111(n)); \\ Antti Karttunen, Dec 23 2018

Formula

a(n) = A008480(A122111(n)).

A352491 n minus the Heinz number of the conjugate of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, -1, 1, -3, 0, -9, 3, 0, -2, -21, 2, -51, -10, -3, 9, -111, 3, -237, 0, -15, -26, -489, 10, -2, -70, 2, -12, -995, 0, -2017, 21, -39, -158, -19, 15, -4059, -346, -105, 12, -8151, -18, -16341, -36, -5, -722, -32721, 26, -32, 5, -237, -108, -65483, 19, -53
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Problem: What is the image? In the nonnegative case it appears to start: 0, 1, 2, 3, 5, 7, 9, ...

Examples

			The partition (4,4,1,1) has Heinz number 196 and its conjugate (4,2,2,2) has Heinz number 189, so a(196) = 196 - 189 = 7.
		

Crossrefs

Positions of zeros are A088902, counted by A000700.
A similar sequence is A175508.
Positions of nonzero terms are A352486, counted by A330644.
Positions of negative terms are A352487, counted by A000701.
Positions of nonnegative terms are A352488, counted by A046682.
Positions of nonpositive terms are A352489, counted by A046682.
Positions of positive terms are A352490, counted by A000701.
A000041 counts integer partitions, strict A000009.
A003963 is product of prime indices, conjugate A329382.
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 is partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A238744 is partition conjugate of prime signature, ranked by A238745.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[n-Times@@Prime/@conj[primeMS[n]],{n,30}]

Formula

a(n) = n - A122111(n).

A321649 Irregular triangle whose n-th row is the conjugate of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 2, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Triangle begins:
  1
  1 1
  2
  1 1 1
  2 1
  1 1 1 1
  3
  2 2
  2 1 1
  1 1 1 1 1
  3 1
  1 1 1 1 1 1
  2 1 1 1
  2 2 1
  4
  1 1 1 1 1 1 1
  3 2
  1 1 1 1 1 1 1 1
  3 1 1
  2 2 1 1
  2 1 1 1 1
  1 1 1 1 1 1 1 1 1
The sequence of dual partitions begins: (), (1), (11), (2), (111), (21), (1111), (3), (22), (211), (11111), (31), (111111), (2111), (221), (4), (1111111), (32), (11111111), (311), (2211), (21111), (111111111), (41), (222), (211111), (33), (3111), (1111111111), (321).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[conj[primeMS[n]],{n,30}]

Formula

a(n,i) = A296150(A122111(n),i).

A352490 Nonexcedance set of A122111. Numbers k > A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

4, 8, 12, 16, 18, 24, 27, 32, 36, 40, 48, 50, 54, 60, 64, 72, 80, 81, 90, 96, 100, 108, 112, 120, 128, 135, 140, 144, 150, 160, 162, 168, 180, 192, 196, 200, 216, 224, 225, 240, 243, 250, 252, 256, 270, 280, 288, 300, 315, 320, 324, 336, 352, 360, 375, 378
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is greater than that of their conjugate.

Examples

			The terms together with their prime indices begin:
    4: (1,1)
    8: (1,1,1)
   12: (2,1,1)
   16: (1,1,1,1)
   18: (2,2,1)
   24: (2,1,1,1)
   27: (2,2,2)
   32: (1,1,1,1,1)
   36: (2,2,1,1)
   40: (3,1,1,1)
   48: (2,1,1,1,1)
   50: (3,3,1)
   54: (2,2,2,1)
   60: (3,2,1,1)
   64: (1,1,1,1,1,1)
For example, the partition (4,4,1,1) has Heinz number 196 and its conjugate (4,2,2,2) has Heinz number 189, and 196 > 189, so 196 is in the sequence, and 189 is not.
		

Crossrefs

These partitions are counted by A000701.
The opposite version is A352487, weak A352489.
The weak version is A352488, counted by A046682.
These are the positions of positive terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352521 counts compositions by subdiagonals, rank statistic A352514.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#>Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) > A122111(a(n)).

A329382 Product of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 4, 2, 1, 3, 1, 2, 4, 4, 1, 6, 1, 3, 4, 2, 1, 4, 8, 2, 9, 3, 1, 6, 1, 5, 4, 2, 8, 8, 1, 2, 4, 4, 1, 6, 1, 3, 9, 2, 1, 5, 16, 12, 4, 3, 1, 12, 8, 4, 4, 2, 1, 8, 1, 2, 9, 6, 8, 6, 1, 3, 4, 12, 1, 10, 1, 2, 18, 3, 16, 6, 1, 5, 16, 2, 1, 8, 8, 2, 4, 4, 1, 12, 16, 3, 4, 2, 8, 6, 1, 24, 9, 16, 1, 6, 1, 4, 18
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Comments

Also the product of parts of the conjugate of the integer partition with Heinz number n, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). For example, the partition (3,2) with Heinz number 15 has conjugate (2,2,1) with product a(15) = 4. - Gus Wiseman, Mar 27 2022

Crossrefs

This is the conjugate version of A003963 (product of prime indices).
The solutions to a(n) = A003963(n) are A325040, counted by A325039.
The Heinz number of the conjugate partition is given by A122111.
These are the row products of A321649 and of A321650.
A000700 counts self-conj partitions, ranked by A088902, complement A330644.
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and of A296150.
A124010 gives prime signature, sorted A118914, sum A001222.
A238744 gives the conjugate of prime signature, rank A238745.

Programs

  • Mathematica
    Table[Times @@ FactorInteger[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]][[All, -1]], {n, 105}] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A005361(n) = factorback(factor(n)[, 2]); \\ from A005361
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329382(n) = A005361(A108951(n));
    
  • PARI
    A329382(n) = if(1==n,1,my(f=factor(n),e=0,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); (m)); \\ Antti Karttunen, Jan 14 2020

Formula

a(n) = A005361(A108951(n)).
A329605(n) >= a(n) >= A329617(n) >= A329378(n).
a(A019565(n)) = A284001(n).
From Antti Karttunen, Jan 14 2020: (Start)
If n = p(k1)^e(k1) * p(k2)^e(k2) * p(k3)^e(k3) * ... * p(kx)^e(kx), with p(n) = A000040(n) and k1 > k2 > k3 > ... > kx, then a(n) = e(k1)^(k1-k2) * (e(k1)+e(k2))^(k2-k3) * (e(k1)+e(k2)+e(k3))^(k3-k4) * ... * (e(k1)+e(k2)+...+e(kx))^kx.
a(n) = A000005(A331188(n)) = A329605(A052126(n)).
(End)
a(n) = A003963(A122111(n)). - Gus Wiseman, Mar 27 2022

A352487 Excedance set of A122111. Numbers k < A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than that of their conjugate.

Examples

			The terms together with their prime indices begin:
   3: (2)
   5: (3)
   7: (4)
  10: (3,1)
  11: (5)
  13: (6)
  14: (4,1)
  15: (3,2)
  17: (7)
  19: (8)
  21: (4,2)
  22: (5,1)
  23: (9)
  25: (3,3)
  26: (6,1)
  28: (4,1,1)
For example, the partition (4,1,1) has Heinz number 28 and its conjugate (3,1,1,1) has Heinz number 40, and 28 < 40, so 28 is in the sequence, and 40 is not.
		

Crossrefs

These partitions are counted by A000701.
The weak version is A352489, counted by A046682.
The opposite version is A352490, weak A352488.
These are the positions of negative terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A238744 = partition conjugate of prime signature, ranked by A238745.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352521 counts compositions by subdiagonals, rank statistic A352514.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#
    				

Formula

a(n) < A122111(a(n)).

A352488 Weak nonexcedance set of A122111. Numbers k >= A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 100, 108, 112, 120, 125, 128, 135, 140, 144, 150, 160, 162, 168, 176, 180, 192, 196, 200, 210, 216, 224, 225, 240, 243, 250, 252, 256, 264, 270, 280
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is greater than or equal to that of their conjugate.

Examples

			The terms together with their prime indices begin:
    1: ()
    2: (1)
    4: (1,1)
    6: (2,1)
    8: (1,1,1)
    9: (2,2)
   12: (2,1,1)
   16: (1,1,1,1)
   18: (2,2,1)
   20: (3,1,1)
   24: (2,1,1,1)
   27: (2,2,2)
   30: (3,2,1)
   32: (1,1,1,1,1)
   36: (2,2,1,1)
   40: (3,1,1,1)
   48: (2,1,1,1,1)
   50: (3,3,1)
   54: (2,2,2,1)
   56: (4,1,1,1)
		

Crossrefs

These partitions are counted by A046682.
The opposite version is A352489, strong A352487.
The strong version is A352490, counted by A000701.
These are the positions of nonnegative terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352525 counts compositions by weak superdiagonals, rank statistic A352517.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#>=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) >= A122111(a(n)).

A352489 Weak excedance set of A122111. Numbers k <= A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than or equal to that of their conjugate.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   3: (2)
   5: (3)
   6: (2,1)
   7: (4)
   9: (2,2)
  10: (3,1)
  11: (5)
  13: (6)
  14: (4,1)
  15: (3,2)
  17: (7)
  19: (8)
  20: (3,1,1)
For example, the partition (3,2,2) has Heinz number 45 and its conjugate (3,3,1) has Heinz number 50, and 45 <= 50, so 45 is in the sequence, and 50 is not.
		

Crossrefs

These partitions are counted by A046682.
The strong version is A352487, counted by A000701.
The opposite version is A352488, strong A352490
These are the positions of nonpositive terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352522 counts compositions by weak subdiagonals, rank statistic A352515.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#<=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) <= A122111(a(n)).
Showing 1-10 of 14 results. Next