cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000657 Median Euler numbers (the middle numbers of Arnold's shuttle triangle).

Original entry on oeis.org

1, 1, 4, 46, 1024, 36976, 1965664, 144361456, 13997185024, 1731678144256, 266182076161024, 49763143319190016, 11118629668610842624, 2925890822304510631936, 895658946905031792553984, 315558279782214450517374976, 126780706777739389745128013824
Offset: 0

Views

Author

Keywords

Comments

Also central terms of the triangle in A008280. - Reinhard Zumkeller, Nov 01 2013
Conjecture: taking the sequence modulo an integer k gives an eventually purely periodic sequence with period dividing phi(k). For example, the sequence taken modulo 9 begins [1, 1, 4, 1, 7, 4, 1, 7, 4, 1, 7, ...] with an apparent period [4, 1, 7] of length 3 = phi(9)/2 beginning at a(2). - Peter Bala, May 08 2023

References

  • V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom. 1 (1992), no. 2, 197-214.
  • L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.

Crossrefs

Cf. A084938, A002832. For a signed version see A099023.
Related polynomials in A098277.
A diagonal of A323834.
Cf. A005799.

Programs

  • Haskell
    a000657 n = a008280 (2 * n) n  -- Reinhard Zumkeller, Nov 01 2013
    
  • Maple
    Digits := 40: rr := array(1..40,1..40): rr[1,1] := 1: for i from 1 to 39 do rr[i+1,1] := subs(x=0,diff(1+tan(x),x$i)): od: for i from 2 to 40 do for j from 2 to i do rr[i,j] := rr[i,j-1]-(-1)^i*rr[i-1,j-1]: od: od: [seq(rr[2*i-1,i],i=1..20)];
    # Alternatively after Alois P. Heinz in A000111:
    b := proc(u, o) option remember;
    `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
    a := n -> b(n, n): seq(a(n), n = 0..15); # Peter Luschny, Oct 27 2017
  • Mathematica
    max = 20; rr[1, 1] = 1; For[i = 1, i <= 2*max - 1, i++, rr[i + 1, 1] = D[1 + Tan[x], {x, i}] /. x -> 0]; For[i = 2, i <= 2*max, i++, For[j = 2, j <= i, j++, rr[i, j] = rr[i, j - 1] - (-1)^i*rr[i - 1, j - 1]]]; Table[rr[2*i - 1, i], {i, 1, max}] (* Jean-François Alcover, Jul 10 2012, after Maple *)
    T[n_,0] := KroneckerDelta[n,0]; T[n_,k_] := T[n,k]=T[n,k-1]+T[n-1,n-k]; Table[T[2n,n], {n,0,16}] (* Oliver Seipel, Nov 24 2024, after Peter Luschny *)
  • Maxima
    a(n):=(-1)^(n)*sum(binomial(n,k)*euler(n+k),k,0,n); /* Vladimir Kruchinin, Apr 06 2015 */
  • Sage
    # Algorithm of L. Seidel (1877)
    def A000657_list(n) :
        R = []; A = {-1:0, 0:1}
        k = 0; e = 1
        for i in (0..n) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) :
                Am += A[k]; A[k] = Am; k += e
            if e < 0 :
                R.append(A[0])
        return R
    A000657_list(30)  # Peter Luschny, Apr 02 2012
    

Formula

Row sums of triangle, read by rows, [0, 1, 4, 9, 16, 25, 36, 49, ...] DELTA [1, 2, 6, 5, 11, 8, 16, 11, 21, 14, ...] where DELTA is Deléham's operator defined in A084938.
G.f.: Sum_{n>=0} a(n)*x^n = 1/(1-1*1x/(1-1*3x/(1-2*5x/(1-2*7x/(1-3*9x/...))))). - Ralf Stephan, Sep 09 2004
G.f.: 1/G(0) where G(k) = 1 - x*(8*k^2+4*k+1) - x^2*(k+1)^2*(4*k+1)*(4*k+3)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 05 2013
G.f.: G(0)/(1-x), where G(k) = 1 - x^2*(k+1)^2*(4*k+1)*(4*k+3)/( x^2*(k+1)^2*(4*k+1)*(4*k+3) - (1 - x*(8*k^2+4*k+1))*(1 - x*(8*k^2+20*k+13))/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 01 2014
a(n) = (-1)^(n)*Sum_{k=0..n} C(n,k)*Euler(n+k). - Vladimir Kruchinin, Apr 06 2015
a(n) ~ 2^(4*n+5/2) * n^(2*n+1/2) / (exp(2*n) * Pi^(2*n+1/2)). - Vaclav Kotesovec, Apr 06 2015
Conjectural e.g.f. as a continued fraction: 1/(1 - (1 - exp(-2*t))/(2 - (1 - exp(-4*t))/(1 - (1 - exp(-6*t))/(2 - (1 - exp(-8*t))/(1 - ... )))) = 1 + t + 4*t^2/2! + 46*t^3/3! + .... Cf. A005799. - Peter Bala, Dec 26 2019

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
Corrected by Sean A. Irvine, Dec 22 2010

A323833 A Seidel matrix A(n,k) read by antidiagonals upwards.

Original entry on oeis.org

0, 1, 1, 1, 0, -1, -2, -3, -3, -2, -5, -3, 0, 3, 5, 16, 21, 24, 24, 21, 16, 61, 45, 24, 0, -24, -45, -61, -272, -333, -378, -402, -402, -378, -333, -272, -1385, -1113, -780, -402, 0, 402, 780, 1113, 1385, 7936, 9321, 10434, 11214, 11616, 11616, 11214, 10434, 9321, 7936
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2019

Keywords

Comments

The first row is a signed version of the Euler numbers A000111.
Other rows are defined by A(n+1,k) = A(n,k) + A(n,k+1).

Examples

			Triangular array T(n,k) = A(n-k,k) (n >= 0, k = 0..n), read from the antidiagonals upwards of square array A:
     0;
     1,    1;
     1,    0,   -1;
    -2,   -3,   -3,   -2;
    -5,   -3,    0,    3,    5;
    16,   21,   24,   24,   21,   16;
    61,   45,   24,    0,  -24,  -45,  -61;
  -272, -333, -378, -402, -402, -378, -333, -272;
  ...
From _Petros Hadjicostas_, Mar 04 2021: (Start)
Square array A(n,k) (n, k >= 0) begins:
   0,  1,   -1,   -2,     5,    16,     -61,    -272,     1385, ...
   1,  0,   -3,    3,    21,   -45,    -333,    1113,     9321, ...
   1, -3,    0,   24,   -24,  -378,     780,   10434,   -33264, ...
  -2, -3,   24,    0,  -402,   402,   11214,  -22830,  -480162, ...
  -5, 21,   24, -402,     0, 11616,  -11616, -502992,  1017600, ...
  16, 45, -378, -402, 11616,     0, -514608,  514608, 31880016, ...
  ... (End)
		

Crossrefs

Cf. A000111, A002832 (next-to-main diagonal), A163747, A323834.

Programs

  • Maple
    A323833 := proc(n,k)
        option remember;
        local i ;
        if k =0 then
            -A163747(n) ;
        elif n =0 then
            (-1)^k*A163747(k) ;
        elif k =n then
            0 ;
        else
            add(binomial(n,i)*procname(0,k+i), i=0..n) ;
        end if;
    end proc:
    seq(seq(A323833(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Jun 11 2025
  • PARI
    {b(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos's PARI program for A000111.
    c(n) = if(n==0, 0, (-1)^floor(n/2)*b(n))
    A(n, k) = sum(i=0, n, binomial(n, i)*c(k+i)) \\ Petros Hadjicostas, Mar 04 2021

Formula

From Petros Hadjicostas, Mar 04 2021: (Start)
Formulas about the square array A(n,k) (n,k > 0):
A(n,0) = -A163747(n) = (-1)^(n+1)*A(0,n) = if(n==0, 0, (-1)^floor(n/2)*A000111(n)).
A(n,n) = 0 and A(n,k) + (-1)^(n+k)*A(k,n) = 0.
A(n, k) = Sum_{i=0..n} binomial(n, i)*A(0,k+i).
Joint e.g.f.: Sum_{n,k >= 0} A(n,k)*(x^n/n!)*(y^k/k!) = 2*exp(-y)*(1 - exp(-x - y)) / (1 + exp(-2*(x + y))) = 2*exp(x)*(exp(x+y) - 1) / (exp(2*(x+y)) + 1).
Formulas about the triangular array T(n,k) = A(n-k,k) (0 <= k <= n):
T(n+1,k+1) = T(n+1,k) - T(n,k).
T(n,k) = -(-1)^n*T(n,n-k).
T(n,k) = Sum_{i=0..n-k} binomial(n-k,i)*T(k+i,k+i) for k=0..n with initial condition T(n,n) = (-1)^n*A163747(n). (End)

Extensions

More terms from Alois P. Heinz, Feb 09 2019

A342161 Expansion of the exponential generating function (tanh(x) - sech(x) + 1) * exp(x).

Original entry on oeis.org

0, 1, 3, 4, -3, -14, 63, 274, -1383, -7934, 50523, 353794, -2702763, -22368254, 199360983, 1903757314, -19391512143, -209865342974, 2404879675443, 29088885112834, -370371188237523, -4951498053124094, 69348874393137903, 1015423886506852354, -15514534163557086903
Offset: 0

Views

Author

Petros Hadjicostas, Mar 03 2021

Keywords

Crossrefs

Programs

  • Maple
    series((2*exp(x)-2)/(exp(-2*x)+1),x,30):seq(n!*coeff(%,x,n),n=0..24); # Peter Luschny, Mar 05 2021
  • PARI
    my(x='x+O('x^30)); concat(0, Vec(serlaplace((-1/cosh(x) + tanh(x) + 1)*exp(x)))) \\ Michel Marcus, Mar 05 2021
    
  • SageMath
    def A323834List(prec):
        R. = PowerSeriesRing(QQ, default_prec=prec)
        f = (2*exp(2*x)*(exp(x) - 1))/(exp(2*x) + 1)
        return f.egf_to_ogf().list()
    print(A323834List(25)) # Peter Luschny, Mar 05 2021

Formula

a(n) = A323834(n, 0).
a(n) = n! [x^n] (tanh(x) - sech(x) + 1) * exp(x).
a(n) = Sum_{i=1..n} binomial(n,i) * (-1)^floor((i-1)/2) * A000111(i).
Showing 1-3 of 3 results.