cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A109297 Primal codes of finite permutations on positive integers.

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 112, 125, 250, 352, 360, 540, 600, 675, 832, 1008, 1125, 1350, 1500, 2176, 2250, 2268, 2352, 2401, 3168, 3969, 4802, 4864, 7488, 7938, 10692, 11616, 11776, 14000, 19584, 21609, 27440, 28812, 29403, 29696, 32448, 35000, 37908, 43218, 43776
Offset: 1

Views

Author

Jon Awbrey, Jul 08 2005

Keywords

Comments

A finite permutation is a bijective mapping from a finite set to itself, counting the empty mapping as a permutation of the empty set.
Also Heinz numbers of integer partitions where the set of distinct parts is equal to the set of distinct multiplicities. These partitions are counted by A114640. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 02 2019

Examples

			Writing (prime(i))^j as i:j, we have the following table:
Primal Codes of Finite Permutations on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = 2:2
` ` `12 = 1:2 2:1
` ` `18 = 1:1 2:2
` ` `40 = 1:3 3:1
` ` 112 = 1:4 4:1
` ` 125 = 3:3
` ` 250 = 1:1 3:3
` ` 352 = 1:5 5:1
` ` 360 = 1:3 2:2 3:1
` ` 540 = 1:2 2:3 3:1
` ` 600 = 1:3 2:1 3:2
` ` 675 = 2:3 3:2
` ` 832 = 1:6 6:1
` `1008 = 1:4 2:2 4:1
` `1125 = 2:2 3:3
` `1350 = 1:1 2:3 3:2
` `1500 = 1:2 2:1 3:3
` `2176 = 1:7 7:1
` `2250 = 1:1 2:2 3:3
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0,
          a(n-1)) while (l-> sort(map(i-> i[2], l)) <> sort(map(
          i-> numtheory[pi](i[1]), l)))(ifactors(k)[2]) do od; k
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],#==1||Union[PrimePi/@First/@FactorInteger[#]]==Union[Last/@FactorInteger[#]]&] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    is(n) = {my(f = factor(n), p = f[,1], e = vecsort(f[,2])); for(i=1, #p, if(primepi(p[i]) != e[i], return(0))); 1}; \\ Amiram Eldar, Jul 30 2022

Extensions

More terms from Franklin T. Adams-Watters, Dec 19 2005
Offset set to 1 by Alois P. Heinz, Mar 08 2019

A087153 Number of partitions of n into nonsquares.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 5, 5, 8, 9, 13, 15, 20, 24, 30, 37, 47, 55, 71, 83, 103, 123, 151, 178, 218, 257, 310, 366, 440, 515, 617, 722, 857, 1003, 1184, 1380, 1625, 1889, 2214, 2570, 3000, 3472, 4042, 4669, 5414, 6244, 7221, 8303, 9583, 10998, 12655, 14502
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 21 2003

Keywords

Comments

Also, number of partitions of n where there are fewer than k parts equal to k for all k. - Jon Perry and Vladeta Jovovic, Aug 04 2004. E.g. a(8)=5 because we have 8=6+2=5+3=4+4=3+3+2.
Convolution of A276516 and A000041. - Vaclav Kotesovec, Dec 30 2016
From Gus Wiseman, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The Heinz numbers of the integer partitions described in Perry and Jovovic's comment are given by A325128, while the Heinz numbers of the integer partitions described in the name are given by A325129. In the former case, the first 10 terms count the following integer partitions:
() (2) (3) (4) (5) (6) (7) (8) (9)
(32) (33) (43) (44) (54)
(42) (52) (53) (63)
(62) (72)
(332) (432)
while in the latter case they count the following:
() (2) (3) (22) (5) (6) (7) (8) (63)
(32) (33) (52) (53) (72)
(222) (322) (62) (333)
(332) (522)
(2222) (3222)
(End)

Examples

			n=7: 2+5 = 2+2+3 = 7: a(7)=3;
n=8: 2+6 = 2+2+2+2 = 2+3+3 = 3+5 = 8: a(8)=5;
n=9: 2+7 = 2+2+5 = 2+2+2+3 = 3+3+3 = 3+6: a(9)=5.
		

References

  • G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. See page 48.

Crossrefs

Programs

  • Haskell
    a087153 = p a000037_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Apr 25 2013
    
  • Maple
    g:=product((1-x^(i^2))/(1-x^i),i=1..70):gser:=series(g,x=0,60):seq(coeff(gser,x^n),n=1..53); # Emeric Deutsch, Feb 09 2006
  • Mathematica
    nn=54; CoefficientList[ Series[ Product[ Sum[x^(i*j), {j, 0, i - 1}], {i, 1, nn}], {x, 0, nn}], x] (* Robert G. Wilson v, Aug 05 2004 *)
    nmax = 100; CoefficientList[Series[Product[(1 - x^(k^2))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 29 2016 *)
  • PARI
    first(n)=my(x='x+O('x^(n+1))); Vec(prod(m=1,sqrtint(n), (1-x^m^2)/(1-x^m))*prod(m=sqrtint(n)+1,n,1/(1-x^m))) \\ Charles R Greathouse IV, Aug 28 2016

Formula

G.f.: Product_{m>0} (1-x^(m^2))/(1-x^m). - Vladeta Jovovic, Aug 21 2003
a(n) = (1/n)*Sum_{k=1..n} (A000203(k)-A035316(k))*a(n-k), a(0)=1. - Vladeta Jovovic, Aug 21 2003
G.f.: Product_{i>=1} (Sum_{j=0..i-1} x^(i*j)). - Jon Perry, Jul 26 2004
a(n) ~ exp(Pi*sqrt(2*n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / 2^(3/4) - 3*Zeta(3/2)^2/(32*Pi)) * sqrt(Pi) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 30 2016

Extensions

Zeroth term added by Franklin T. Adams-Watters, Jan 25 2010

A325131 Heinz numbers of integer partitions where the set of distinct parts is disjoint from the set of distinct multiplicities.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 100, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A114639.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers where the prime indices are disjoint from the prime exponents.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
  11: {5}
  13: {6}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  32: {1,1,1,1,1}
  33: {2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Intersection[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]=={}&]

A352830 Numbers whose weakly increasing prime indices y have no fixed points y(i) = i.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

First differs from A325128 in lacking 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The terms together with their prime indices begin:
      1: {}        35: {3,4}     69: {2,9}     105: {2,3,4}
      3: {2}       37: {12}      71: {20}      107: {28}
      5: {3}       39: {2,6}     73: {21}      109: {29}
      7: {4}       41: {13}      77: {4,5}     111: {2,12}
     11: {5}       43: {14}      79: {22}      113: {30}
     13: {6}       47: {15}      83: {23}      115: {3,9}
     15: {2,3}     49: {4,4}     85: {3,7}     119: {4,7}
     17: {7}       51: {2,7}     87: {2,10}    121: {5,5}
     19: {8}       53: {16}      89: {24}      123: {2,13}
     21: {2,4}     55: {3,5}     91: {4,6}     127: {31}
     23: {9}       57: {2,8}     93: {2,11}    129: {2,14}
     25: {3,3}     59: {17}      95: {3,8}     131: {32}
     29: {10}      61: {18}      97: {25}      133: {4,8}
     31: {11}      65: {3,6}    101: {26}      137: {33}
     33: {2,5}     67: {19}     103: {27}      139: {34}
		

Crossrefs

* = unproved
These partitions are counted by A238394, strict A025147.
These are the zeros of A352822.
*The reverse version is A352826, counted by A064428 (strict A352828).
*The complement reverse version is A352827, counted by A001522.
The complement is A352872, counted by A238395.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]==0&]

A054744 p-full numbers: numbers such that if any prime p divides it, then so does p^p.

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 64, 81, 108, 128, 216, 243, 256, 324, 432, 512, 648, 729, 864, 972, 1024, 1296, 1728, 1944, 2048, 2187, 2592, 2916, 3125, 3456, 3888, 4096, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 10368, 11664, 12500, 13824, 15552, 15625, 16384
Offset: 1

Views

Author

James Sellers, Apr 22 2000

Keywords

Comments

A027748(a(n),k) <= A124010(a(n),k), 1<=k<=A001221(a(n)). [Reinhard Zumkeller, Apr 28 2012]
Heinz numbers of integer partitions where the multiplicity of each part k is at least prime(k). These partitions are counted by A325132. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 02 2019

Examples

			8 is an element because 8 = 2^3 and 2<=3, while 25 is not an element because 25 = 5^2 and 5>2.
From _Gus Wiseman_, Apr 02 2019: (Start)
The sequence of terms together with their prime indices begins:
    1: {}
    4: {1,1}
    8: {1,1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  128: {1,1,1,1,1,1,1}
  216: {1,1,1,2,2,2}
  243: {2,2,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  324: {1,1,2,2,2,2}
  432: {1,1,1,1,2,2,2}
  512: {1,1,1,1,1,1,1,1,1}
  648: {1,1,1,2,2,2,2}
  729: {2,2,2,2,2,2}
  864: {1,1,1,1,1,2,2,2}
  972: {1,1,2,2,2,2,2}
(End)
		

Crossrefs

Programs

  • Haskell
    a054744 n = a054744_list !! (n-1)
    a054744_list = filter (\x -> and $
       zipWith (<=) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
    -- Reinhard Zumkeller, Apr 28 2012
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>=p]&] (* Gus Wiseman, Apr 02 2019 *)

Formula

If n = Product p_i^e_i then p_i<=e_i for all i.
Sum_{n>=1} 1/a(n) = Product_{p prime} 1 + 1/(p^(p-1)*(p-1)) = 1.58396891058853238595.... - Amiram Eldar, Oct 24 2020

A325127 Numbers in whose prime factorization the exponent of prime(k) is greater than k for all prime indices k.

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 64, 81, 108, 128, 216, 243, 256, 324, 432, 512, 625, 648, 729, 864, 972, 1024, 1296, 1728, 1944, 2048, 2187, 2500, 2592, 2916, 3125, 3456, 3888, 4096, 5000, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 10000, 10368, 11664, 12500, 13824, 15552
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions where each part k appears more than k times. Such partitions are counted by A115584.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    4: {1,1}
    8: {1,1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  128: {1,1,1,1,1,1,1}
  216: {1,1,1,2,2,2}
  243: {2,2,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  324: {1,1,2,2,2,2}
  432: {1,1,1,1,2,2,2}
  512: {1,1,1,1,1,1,1,1,1}
  625: {3,3,3,3}
  648: {1,1,1,2,2,2,2}
  729: {2,2,2,2,2,2}
  864: {1,1,1,1,1,2,2,2}
  972: {1,1,2,2,2,2,2}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>PrimePi[p]]&]
    With[{k = 4}, m = Prime[k]^(k + 1); s = {}; Do[p = Prime[i]; AppendTo[s, Join[{1}, p^Range[i + 1, Floor[Log[p, m]]]]], {i, 1, k}]; Union @ Select[Times @@@ Tuples[s], # <= m &]] (* Amiram Eldar, Oct 24 2020 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^k * (prime(k)-1)) = 1.58661114052385082598.... - Amiram Eldar, Oct 24 2020

A325130 Numbers in whose prime factorization the exponent of prime(k) is not equal to k for any prime index k.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 43, 44, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 64, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the integer partitions counted by A276429.
The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k + 1/prime(k)^(k+1)) = 0.68974964705635552968... - Amiram Eldar, Jan 09 2021

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
  11: {5}
  12: {1,1,2}
  13: {6}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  23: {9}
  24: {1,1,1,2}
  25: {3,3}
  27: {2,2,2}
  28: {1,1,4}
		

Crossrefs

Programs

  • Maple
    q:= n-> andmap(i-> numtheory[pi](i[1])<>i[2], ifactors(n)[2]):
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 0, a(n-1)) while not q(k) do od; k
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Oct 28 2019
  • Mathematica
    Select[Range[100],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k!=PrimePi[p]]&]

A118672 Numbers divisible by prime(i)^i for some i.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114, 116, 117, 118, 120
Offset: 1

Views

Author

Keywords

Comments

Any multiple of an element of this sequence is in the sequence. The primitive elements of this sequence are A062457.
The asymptotic density of this sequence is 1 - Product_{k>=1} (1 - 1/prime(k)^k) = 0.55929756713969708790... - Amiram Eldar, Apr 06 2021

Crossrefs

Complement of A325128.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    S:= {}:
    for i from 1 do
      v:= ithprime(i)^i;
      if v > N then break fi;
      S:= S union {seq(j,j=v..N,v)};
    od:
    sort(convert(S,list)); # Robert Israel, Mar 27 2018
  • Mathematica
    seq[max_] := Module[{s = {}, p = 2, i = 1, q = 2}, While[q < max, s = Join[s, Range[q, max, q]]; p = NextPrime[p]; i++; q = p^i]; Union[s]]; seq[120] (* Amiram Eldar, Apr 06 2021 *)

Extensions

An incorrect g.f. was deleted by N. J. A. Sloane, Sep 13 2009

A325129 Heinz numbers of integer partitions into nonsquares (A087153).

Original entry on oeis.org

1, 3, 5, 9, 11, 13, 15, 17, 19, 25, 27, 29, 31, 33, 37, 39, 41, 43, 45, 47, 51, 55, 57, 59, 61, 65, 67, 71, 73, 75, 79, 81, 83, 85, 87, 89, 93, 95, 99, 101, 103, 107, 109, 111, 113, 117, 121, 123, 125, 127, 129, 131, 135, 137, 139, 141, 143, 145, 149, 153, 155
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   5: {3}
   9: {2,2}
  11: {5}
  13: {6}
  15: {2,3}
  17: {7}
  19: {8}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  37: {12}
  39: {2,6}
  41: {13}
  43: {14}
  45: {2,2,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],!MemberQ[If[#==1,{},FactorInteger[#]],{p_,_}/;IntegerQ[Sqrt[PrimePi[p]]]]&]

A376427 The number of distinct values of x+y+z+w (mod n) when x*y*z*w = 1 (mod n).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 2, 5, 5, 11, 3, 13, 7, 15, 4, 17, 5, 19, 5, 21, 11, 23, 6, 25, 13, 15, 7, 29, 15, 31, 8, 33, 17, 35, 5, 37, 19, 39, 10, 41, 21, 43, 11, 25, 23, 47, 12, 49, 25, 51, 13, 53, 15, 55, 14, 57, 29, 59, 15, 61, 31, 35, 16, 65, 33, 67, 17, 69, 35, 71, 10, 73, 37, 75, 19, 77, 39, 79, 20, 45, 41, 83, 21, 85, 43, 87, 22, 89, 25
Offset: 1

Views

Author

W. Edwin Clark, Sep 22 2024

Keywords

Comments

The values of n for which a(n) = n seem to agree with A325128. But I have no proof.

Crossrefs

Programs

  • Maple
    a:=proc(n)
    local x,y,z,w,N;
    N:={};
    for x from 0 to n-1 do
     for y from x to n-1 do
      for z from y to n-1 do
       for w from z to n-1 do
         if (x*y*z*w) mod n = 1 mod n then N:=N union {(x+y+z+w) mod n}; fi;
       od:
      od:
     od:
    od:
    nops(N);
    end:
  • Python
    def A376427(n):
        s = set()
        for x in range(n):
            for y in range(x,n):
                xy, xyp = x*y%n, (x+y)%n
                for z in range(y,n):
                    try:
                        s.add((xyp+z+pow(xy*z%n,-1,n))%n)
                    except:
                        continue
        return len(s) # Chai Wah Wu, Sep 23 2024
Showing 1-10 of 10 results.