A109297 Primal codes of finite permutations on positive integers.
1, 2, 9, 12, 18, 40, 112, 125, 250, 352, 360, 540, 600, 675, 832, 1008, 1125, 1350, 1500, 2176, 2250, 2268, 2352, 2401, 3168, 3969, 4802, 4864, 7488, 7938, 10692, 11616, 11776, 14000, 19584, 21609, 27440, 28812, 29403, 29696, 32448, 35000, 37908, 43218, 43776
Offset: 1
Keywords
Examples
Writing (prime(i))^j as i:j, we have the following table: Primal Codes of Finite Permutations on Positive Integers ` ` ` 1 = { } ` ` ` 2 = 1:1 ` ` ` 9 = 2:2 ` ` `12 = 1:2 2:1 ` ` `18 = 1:1 2:2 ` ` `40 = 1:3 3:1 ` ` 112 = 1:4 4:1 ` ` 125 = 3:3 ` ` 250 = 1:1 3:3 ` ` 352 = 1:5 5:1 ` ` 360 = 1:3 2:2 3:1 ` ` 540 = 1:2 2:3 3:1 ` ` 600 = 1:3 2:1 3:2 ` ` 675 = 2:3 3:2 ` ` 832 = 1:6 6:1 ` `1008 = 1:4 2:2 4:1 ` `1125 = 2:2 3:3 ` `1350 = 1:1 2:3 3:2 ` `1500 = 1:2 2:1 3:3 ` `2176 = 1:7 7:1 ` `2250 = 1:1 2:2 3:3
Links
- Amiram Eldar, Table of n, a(n) for n = 1..300 (terms 1..100 from Alois P. Heinz)
- Jon Awbrey, Riffs and Rotes.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0, a(n-1)) while (l-> sort(map(i-> i[2], l)) <> sort(map( i-> numtheory[pi](i[1]), l)))(ifactors(k)[2]) do od; k end: seq(a(n), n=1..45); # Alois P. Heinz, Mar 08 2019
-
Mathematica
Select[Range[1000],#==1||Union[PrimePi/@First/@FactorInteger[#]]==Union[Last/@FactorInteger[#]]&] (* Gus Wiseman, Apr 02 2019 *)
-
PARI
is(n) = {my(f = factor(n), p = f[,1], e = vecsort(f[,2])); for(i=1, #p, if(primepi(p[i]) != e[i], return(0))); 1}; \\ Amiram Eldar, Jul 30 2022
Extensions
More terms from Franklin T. Adams-Watters, Dec 19 2005
Offset set to 1 by Alois P. Heinz, Mar 08 2019
Comments