A002145 Primes of the form 4*k + 3.
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563, 571
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 146-147.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 252.
- W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 66.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Dario Alpern, Gaussian primes.
- Lenore Blum, Manuel Blum, and Mike Shub, A simple unpredictable pseudo-random number generator, SIAM Journal on Computing 15:2 (1 May 1986), pp. 364-383.
- Andrew Granville and Greg Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Lucas Lacasa, Bartolome Luque, Ignacio Gómez, and Octavio Miramontes, On a Dynamical Approach to Some Prime Number Sequences, Entropy 20.2 (2018): 131, also arXiv:1802.08349 [math.NT], 2018.
- E. T. Ordman, Tables of the class number for negative prime discriminants, Deposited in Unpublished Mathematical Table file of Math. Comp. [Annotated scanned partial copy with notes]
- Mario Raso, Integer Sequences in Cryptography: A New Generalized Family and its Application, Ph. D. Thesis, Sapienza University of Rome (Italy 2025). See p. 67.
- Harry J. Smith, Gaussian Primes.
- Ian Stewart, The Great Mathematical Problems, 2013.
- Eric Weisstein's World of Mathematics, Gaussian Prime.
- Eric Weisstein's World of Mathematics, Gaussian Integer.
- Wolfram Research, The Gauss Reciprocity Law.
- Index entries for Gaussian integers and primes.
- Index to sequences related to decomposition of primes in quadratic fields.
Crossrefs
Programs
-
Haskell
a002145 n = a002145_list !! (n-1) a002145_list = filter ((== 1) . a010051) [3, 7 ..] -- Reinhard Zumkeller, Aug 02 2015, Sep 23 2011
-
Magma
[4*n+3 : n in [0..142] | IsPrime(4*n+3)]; // Arkadiusz Wesolowski, Nov 15 2013
-
Maple
A002145 := proc(n) option remember; if n = 1 then 3; else a := nextprime(procname(n-1)) ; while a mod 4 <> 3 do a := nextprime(a) ; end do; return a; end if; end proc: seq(A002145(n),n=1..20) ; # R. J. Mathar, Dec 08 2011
-
Mathematica
Select[4Range[150] - 1, PrimeQ] (* Alonso del Arte, Dec 19 2013 *) Select[ Prime@ Range[2, 110], Length@ PowersRepresentations[#^2, 2, 2] == 1 &] (* or *) Select[ Prime@ Range[2, 110], JacobiSymbol[-1, #] == -1 &] (* Robert G. Wilson v, May 11 2014 *)
-
PARI
forprime(p=2,1e3,if(p%4==3,print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
-
Sage
def A002145_list(n): return [p for p in prime_range(1, n + 1) if p % 4 == 3] # Peter Luschny, Jul 29 2014
Formula
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A243379.
Product_{k>=1} (1 + 1/a(k)^2) = A243381.
Product_{k>=1} (1 - 1/a(k)^3) = A334427.
Product_{k>=1} (1 + 1/a(k)^3) = A334426.
Product_{k>=1} (1 - 1/a(k)^4) = A334448.
Product_{k>=1} (1 + 1/a(k)^4) = A334447.
Product_{k>=1} (1 - 1/a(k)^5) = A334452.
Product_{k>=1} (1 + 1/a(k)^5) = A334451. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/a(k)) / (1 + 1/A002144(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/a(k)) / (1 - 1/A002144(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log(2 * (2^(n*s) - 1) * (n*s - 1)! * zeta(n*s) / (Pi^(n*s) * abs(EulerE(n*s - 1))))/n, s >= 3 odd number. - Dimitris Valianatos, May 20 2020
Extensions
More terms from James Sellers, Apr 21 2000
Comments