cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A361637 Constant term in the expansion of (1 + x + y + z + 1/(x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 25, 121, 361, 841, 4201, 25705, 118441, 423721, 1628881, 8065201, 41225185, 184416961, 768211081, 3420474121, 16620237001, 79922011465, 364149052705, 1638806098945, 7655390077105, 36739991161105, 174363209490625, 811840219629121, 3790118889635521
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2023

Keywords

Comments

Diagonal of the rational function 1/(1 - (x^4 + y^4 + z^4 + w^4 + x*y*z*w)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\4, 1/(k!^4*(n-4*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} 1/(k!^4 * (n-4*k)!).
G.f.: Sum_{k>=0} (4*k)!/k!^4 * x^(4*k)/(1-x)^(4*k+1).
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: n^3*a(n) = (2*n - 1)*(2*n^2 - 2*n + 1)*a(n-1) - (n-1)*(6*n^2 - 12*n + 7)*a(n-2) + 2*(n-2)*(n-1)*(2*n - 3)*a(n-3) + 255*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 5^(n + 3/2) / (2^(5/2) * Pi^(3/2) * n^(3/2)). (End)

A208425 Expansion of Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1).

Original entry on oeis.org

1, 1, 7, 25, 151, 751, 4411, 24697, 146455, 862351, 5195257, 31392967, 191815339, 1177508515, 7276161907, 45154764025, 281492498455, 1761076827895, 11055132835705, 69600761349175, 439370198255401, 2780265190892641, 17631718101804517, 112038660509078695
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2012

Keywords

Comments

Compare g.f. to: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1), which is a g.f. of the Franel numbers (A000172).
From Zhi-Wei Sun, Nov 12 2016: (Start)
Conjecture: (i) For any prime p > 3 and positive integer n, the number (a(p*n)-a(n))/(p*n)^3 is always a p-adic integer.
(ii) For any prime p == 1 (mod 3), we have Sum_{k=0..p-1}a(k) == C(2(p-1)/3,(p-1)/3) (mod p^2). For any prime p == 2 (mod 3), we have Sum_{k=0..p-1}a(k) == 2p/C(2(p+1)/3,(p+1)/3) (mod p^2).
We have proved part (i) of this conjecture for n = 1. (End)
Diagonal of rational functions 1/(1 - x*y - y*z - x*z - x*y*z), 1/(1 - x*y + y*z + x*z - x*y*z). - Gheorghe Coserea, Jul 03 2018
Number of paths from (0,0,0) to (n,n,n) using steps (1,1,0), (1,0,1), (0,1,1), and (1,1,1). - William J. Wang, Dec 07 2020
Diagonal of the rational function 1/(1 - (x^2 + y^2 + z^2 + x*y*z)). - Seiichi Manyama, Jul 04 2025

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 25*x^3 + 151*x^4 + 751*x^5 + 4411*x^6 +...
where
A(x) = 1/(1-x) + 6*x^2/(1-x)^4 + 90*x^4/(1-x)^7 + 1680*x^6/(1-x)^10 + 34650*x^8/(1-x)^13 + 756756*x^10/(1-x)^16 +...
		

Crossrefs

Programs

  • Maple
    series(hypergeom([1/3, 2/3], [1], 27*x^2/(1 - x)^3)/(1 - x), x=0, 25): seq(coeff(%, x, n), n=0..23);  # Mark van Hoeij, May 20 2013
    a := n -> hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4); seq(simplify(a(n)), n=0..23);  # Peter Luschny, Jan 11 2025
  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[(3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1), {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-x+x*O(x^n))^(3*m+1)),n)}
    for(n=0,25,print1(a(n),", "))

Formula

Conjecture: n^2*(3*n-5)*a(n) +(-9*n^3+24*n^2-17*n+4) *a(n-1) -(3*n-4) *(24*n^2-56*n+27)*a(n-2) -(3*n-2)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Mar 10 2016
a(n) ~ sqrt(1/2 + sqrt(13)*cos(arctan(53*sqrt(3)/19)/3)/6) * (1 + 6*cos(Pi/9))^n / (Pi*n). - Vaclav Kotesovec, Jul 05 2016
It is easy to show that a(n) = Sum_{k=0..n}C(n,k)*C(n-k,k)*C(n+k,k) = Sum_{k=0..n}C(n+k,k)*C(n,2k)*C(2k,k). By this formula and the Zeilberger algorithm, we confirm the recurrence conjectured by R. J. Mathar. - Zhi-Wei Sun, Nov 12 2016
G.f. y=A(x) satisfies: 0 = x*(x + 2)*(x^3 + 24*x^2 + 3*x - 1)*y'' + (3*x^4 + 56*x^3 + 147*x^2 + 12*x - 2)*y' + (x^3 + 9*x^2 + 42*x + 2)*y. - Gheorghe Coserea, Jul 03 2018
a(n) = hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4). - Peter Luschny, Jan 11 2025

A361703 Constant term in the expansion of (1 + w + x + y + z + 1/(w*x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 143641, 1302841, 7579441, 32586841, 113753641, 509068561, 3599319361, 25076993761, 142188273361, 662296228561, 2933770097881, 15581813723281, 99333170493481, 623696622059281, 3466773281312881, 17406784944114721
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2023

Keywords

Comments

Diagonal of the rational function 1/(1 - (v^5 + w^5 + x^5 + y^5 + z^5 + v*w*x*y*z)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (4*k)!/k!^4*binomial(5*k, 4*k)*binomial(n, 5*k));

Formula

a(n) = Sum_{k=0..floor(n/5)} (4*k)!/k!^4 * binomial(5*k,4*k) * binomial(n,5*k) = Sum_{k=0..floor(n/5)} (5*k)!/k!^5 * binomial(n,5*k).
a(n) ~ 9 * 6^n / (sqrt(5) * Pi^2 * n^2). - Vaclav Kotesovec, Mar 25 2023

A361675 Constant term in the expansion of (1 + x*y*z + w*y*z + w*x*z + w*x*y + 1/(w*x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 841, 6721, 30241, 100801, 277201, 665281, 1441441, 10450441, 118918801, 917716801, 5162277121, 23183465761, 88037913601, 293383742401, 988690080001, 4810025534161, 33669381872281, 234722545854721, 1407984124932001, 7219196588604001
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2023

Keywords

Comments

Also constant term in the expansion of (1 + w^3 + x^3 + y^3 + z^3 + 1/(w*x*y*z))^n.

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[1/(k!^4 * (3*k)! * (n-7*k)!), {k,0,n/7}], {n,0,30}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\7, 1/(k!^4*(3*k)!*(n-7*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/7)} 1/(k!^4 * (3*k)! * (n-7*k)!) = Sum_{k=0..floor(n/7)} (4*k)!/k!^4 * binomial(7*k,4*k) * binomial(n,7*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 3*n^4*(3*n - 14)*(3*n - 7)*a(n) = 3*(63*n^6 - 567*n^5 + 1750*n^4 - 2555*n^3 + 2114*n^2 - 931*n + 170)*a(n-1) - 21*(n-1)*(27*n^5 - 270*n^4 + 995*n^3 - 1770*n^2 + 1579*n - 570)*a(n-2) + 21*(n-2)*(n-1)*(45*n^4 - 450*n^3 + 1625*n^2 - 2580*n + 1547)*a(n-3) - 105*(n-3)*(n-2)*(n-1)*(9*n^3 - 81*n^2 + 239*n - 235)*a(n-4) + 21*(n-4)*(n-3)*(n-2)*(n-1)*(27*n^2 - 189*n + 329)*a(n-5) - 189*(n-5)*(n-4)^2*(n-3)*(n-2)*(n-1)*a(n-6) + 823570*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-7).
a(n) ~ sqrt(c) * (1 + 7/3^(3/7))^n / (Pi^2 * n^2), where c = 16.2900695424464373693361847496482396571795561541696471874653361... is the real root of the equation -28752928904042094750625 + 28055343229566040503381*c - 11938039301954303025264*c^2 + 2737803069771369110784*c^3 - 386503281377426239488*c^4 + 32401195469663698944*c^5 - 1511492100446748672*c^6 + 30217251487481856*c^7 = 0. (End)

A361657 Constant term in the expansion of (1 + x^2 + y^2 + 1/(x*y))^n.

Original entry on oeis.org

1, 1, 1, 1, 13, 61, 181, 421, 1261, 5293, 21421, 73261, 232321, 789361, 2954953, 11127481, 39961741, 139908301, 499315501, 1835933293, 6792310153, 24827506873, 90058277233, 328509505633, 1210097040769, 4473191880961, 16495696956961, 60721903812961
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*Sum[1/(k!^2*(2*k)!*(n - 4*k)!), {k, 0, n/4}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 20 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\4, 1/(k!^2*(2*k)!*(n-4*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} 1/(k!^2 * (2*k)! * (n-4*k)!) = Sum_{k=0..floor(n/4)} binomial(n,4*k) * A000897(k).
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: (n-2)*n^2*a(n) = (4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - (n-1)*(6*n^2 - 18*n + 13)*a(n-2) + 4*(n-2)^2*(n-1)*a(n-3) + 63*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ (1 + 2*sqrt(2))^(n+1) / (4*Pi*n). (End)

A361673 Constant term in the expansion of (1 + x*y + y*z + z*x + 1/(x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 61, 361, 1261, 3361, 7561, 34021, 235621, 1294921, 5482621, 19039021, 65345281, 286147681, 1511480881, 7688794681, 34337600281, 138221512741, 554603041441, 2454508134541, 11874549049441, 57412094595241, 261925516443361, 1134301869703861
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2023

Keywords

Comments

Also constant term in the expansion of (1 + x^2 + y^2 + z^2 + 1/(x*y*z))^n.

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[1/(k!^3 * (2*k)! * (n-5*k)!), {k,0,n/5}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\5, 1/(k!^3*(2*k)!*(n-5*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/5)} 1/(k!^3 * (2*k)! * (n-5*k)!) = Sum_{k=0..floor(n/5)} binomial(n,5*k) * A001460(k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 2*n^3*(2*n - 5)*a(n) = 2*(10*n^4 - 40*n^3 + 50*n^2 - 30*n + 7)*a(n-1) - 10*(n-1)*(4*n^3 - 18*n^2 + 26*n - 13)*a(n-2) + 40*(n-2)^3*(n-1)*a(n-3) - 10*(n-3)*(n-2)*(n-1)*(2*n - 5)*a(n-4) + 3129*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ sqrt(c) * (1 + 5/2^(2/5))^n / (Pi^(3/2) * n^(3/2)), where c = 3.154712586460560795509193778252140601572145506226776094640234924884123818... is the real root of the equation -30634915689 + 95407210000*c - 127160000000*c^2 + 79846400000*c^3 - 25600000000*c^4 + 3276800000*c^5 = 0. (End)

A361677 Constant term in the expansion of (1 + x + y + z + 1/(x*y) + 1/(y*z) + 1/(z*x))^n.

Original entry on oeis.org

1, 1, 1, 19, 73, 181, 1711, 10081, 38809, 256033, 1696861, 8388271, 49449511, 326195299, 1847392093, 10789655059, 69202030969, 418647580489, 2498113460881, 15735859252147, 97919649290053, 598317173139313, 3748943081117323
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3*k)!/k!^3 * Binomial[3*k,k] * Binomial[n,3*k], {k,0,n/3}], {n,0,25}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!/k!^3*binomial(3*k, k)*binomial(n, 3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (3*k)!/k!^3 * binomial(3*k,k) * binomial(n,3*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 2*n^3*(2*n - 3)*a(n) = 2*(10*n^4 - 32*n^3 + 38*n^2 - 22*n + 5)*a(n-1) - 2*(n-1)*(2*n - 3)*(10*n^2 - 24*n + 17)*a(n-2) + (n-2)*(n-1)*(769*n^2 - 2331*n + 1594)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(739*n - 1481)*a(n-4) + 733*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ sqrt(733/108 + 1/2^(2/3) + 9/2^(4/3)) * (1 + 9/2^(2/3))^n / (2 * Pi^(3/2) * n^(3/2)). (End)

A361699 Constant term in the expansion of (1 + x^3 + y^3 + 1/(x*y))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 21, 121, 421, 1121, 2521, 6301, 23101, 99001, 386101, 1301301, 3943941, 11779041, 38241841, 136988041, 504616441, 1793870941, 6061831441, 19923689941, 66139128441, 227052188441, 800641330721, 2831644750221, 9870443816221, 33869987735221
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k] * Binomial[5*k,2*k] * Binomial[n,5*k], {k,0,n/5}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(2*k, k)*binomial(5*k, 2*k)*binomial(n, 5*k));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(2*k,k) * binomial(5*k,2*k) * binomial(n,5*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 3*n^2*(3*n - 10)*(3*n - 5)*a(n) = 3*(45*n^4 - 270*n^3 + 510*n^2 - 375*n + 104)*a(n-1) - 45*(n-1)*(6*n^3 - 36*n^2 + 67*n - 40)*a(n-2) + 15*(n-2)*(n-1)*(18*n^2 - 90*n + 109)*a(n-3) - 135*(n-3)^2*(n-2)*(n-1)*a(n-4) + 3152*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ sqrt(c) * (1 + 5/3^(3/5))^n / (Pi * n), where c = 0.8011502211360696582191471740430432783906089377204901279920664641344364478... is the real root of the equation -2483776 + 28284375*c - 141840000*c^2 + 337500000*c^3 - 405000000*c^4 + 194400000*c^5 = 0. (End)

A361700 Constant term in the expansion of (1 + x^4 + y^4 + 1/(x*y))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 31, 211, 841, 2521, 6301, 13861, 30691, 90091, 360361, 1501501, 5645641, 18749641, 56063281, 157520641, 445836901, 1368402421, 4638690211, 16511900791, 58059667051, 195211574251, 625463703151, 1942351017751, 6016826006101, 19113287111101
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k] * Binomial[6*k,2*k] * Binomial[n,6*k], {k,0,n/6}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n\6, binomial(2*k, k)*binomial(6*k, 2*k)*binomial(n, 6*k));

Formula

a(n) = Sum_{k=0..floor(n/6)} binomial(2*k,k) * binomial(6*k,2*k) * binomial(n,6*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-3)*n^2*(2*n - 9)*(2*n - 3)*a(n) = (24*n^5 - 240*n^4 + 836*n^3 - 1257*n^2 + 843*n - 220)*a(n-1) - (n-1)*(60*n^4 - 600*n^3 + 2094*n^2 - 3051*n + 1600)*a(n-2) + (n-2)*(n-1)*(80*n^3 - 720*n^2 + 2076*n - 1935)*a(n-3) - (n-3)*(n-2)*(n-1)*(60*n^2 - 420*n + 719)*a(n-4) + 24*(n-4)^2*(n-3)*(n-2)*(n-1)*a(n-5) + 725*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6).
a(n) ~ sqrt(3/2 + 2^(1/3) + 1/(3*2^(1/3))) * (1 + 3/2^(1/3))^n / (2*Pi*n). (End)

A349002 The number of Lyndon words of size n from an alphabet of 4 letters and 1st, 2nd and 3rd letter of the alphabet with equal frequency in the words.

Original entry on oeis.org

1, 1, 0, 2, 6, 12, 34, 120, 354, 1082, 3636, 12270, 40708, 139062, 484866, 1692268, 5944470, 21134808, 75625330, 271720146, 982116648, 3569558058, 13025614962, 47714385708, 175470892468, 647508620070, 2396613522804, 8896422981608, 33114570409896, 123566641829256
Offset: 0

Views

Author

R. J. Mathar, Nov 05 2021

Keywords

Comments

Counts a subset of the Lyndon words in A027377. Here there is no requirement of how often the 4th letter of the alphabet occurs in the admitted word, only on the frequency of the 1st to 3rd letter of the alphabet.

Examples

			Examples for the alphabet {0,1,2,3}:
a(0)=1 counts (), the empty word.
a(3)=2 counts (021) (012).
a(4)=6 counts (0321) (0231) (0312) (0132) (0213) (0123).
a(5)=12 counts (03321) (03231) (02331) (03312) (03132) (01332) (03213) (02313) (03123) (01323) (02133) (01233).
a(6)=34 counts (020211) (002211) (012021) (002121) (010221) (001221) (033321) (033231) (032331) (023331) (012102) (011202) (002112) (010212) (001212) (033312) (011022) (010122) (001122) (033132) (031332) (013332) (033213) (032313) (023313) (033123) (031323) (013323) (032133) (023133) (031233) (013233) (021333) (012333).
		

Crossrefs

Programs

  • PARI
    a(n) = if(n>0, sumdiv(n, d, moebius(n/d)*sum(k=0, d\3, d!/(k!^3*(d-3*k)!)))/n, n==0) \\ Andrew Howroyd, Jan 14 2023

Formula

n*a(n) = Sum_{d|n} mu(d)*A344560(n/d) where mu = A008683.

Extensions

Terms corrected and extended by Andrew Howroyd, Jan 14 2023
Showing 1-10 of 10 results.