A361637
Constant term in the expansion of (1 + x + y + z + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 841, 4201, 25705, 118441, 423721, 1628881, 8065201, 41225185, 184416961, 768211081, 3420474121, 16620237001, 79922011465, 364149052705, 1638806098945, 7655390077105, 36739991161105, 174363209490625, 811840219629121, 3790118889635521
Offset: 0
A208425
Expansion of Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1).
Original entry on oeis.org
1, 1, 7, 25, 151, 751, 4411, 24697, 146455, 862351, 5195257, 31392967, 191815339, 1177508515, 7276161907, 45154764025, 281492498455, 1761076827895, 11055132835705, 69600761349175, 439370198255401, 2780265190892641, 17631718101804517, 112038660509078695
Offset: 0
G.f.: A(x) = 1 + x + 7*x^2 + 25*x^3 + 151*x^4 + 751*x^5 + 4411*x^6 +...
where
A(x) = 1/(1-x) + 6*x^2/(1-x)^4 + 90*x^4/(1-x)^7 + 1680*x^6/(1-x)^10 + 34650*x^8/(1-x)^13 + 756756*x^10/(1-x)^16 +...
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- A. Bostan, S. Boukraa, J.-M. Maillard and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- Hao Pan and Zhi-Wei Sun, Supercongruences for central trinomial coefficients, arXiv:2012.05121 [math.NT], 2020.
- Zhi-Wei Sun, Supercongruences involving Lucas sequences, arXiv:1610.03384 [math.NT], 2016.
-
series(hypergeom([1/3, 2/3], [1], 27*x^2/(1 - x)^3)/(1 - x), x=0, 25): seq(coeff(%, x, n), n=0..23); # Mark van Hoeij, May 20 2013
a := n -> hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4); seq(simplify(a(n)), n=0..23); # Peter Luschny, Jan 11 2025
-
nmax = 20; CoefficientList[Series[Sum[(3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1), {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
-
{a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-x+x*O(x^n))^(3*m+1)),n)}
for(n=0,25,print1(a(n),", "))
A361703
Constant term in the expansion of (1 + w + x + y + z + 1/(w*x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 143641, 1302841, 7579441, 32586841, 113753641, 509068561, 3599319361, 25076993761, 142188273361, 662296228561, 2933770097881, 15581813723281, 99333170493481, 623696622059281, 3466773281312881, 17406784944114721
Offset: 0
-
a(n) = sum(k=0, n\5, (4*k)!/k!^4*binomial(5*k, 4*k)*binomial(n, 5*k));
A361675
Constant term in the expansion of (1 + x*y*z + w*y*z + w*x*z + w*x*y + 1/(w*x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 841, 6721, 30241, 100801, 277201, 665281, 1441441, 10450441, 118918801, 917716801, 5162277121, 23183465761, 88037913601, 293383742401, 988690080001, 4810025534161, 33669381872281, 234722545854721, 1407984124932001, 7219196588604001
Offset: 0
-
Table[n! * Sum[1/(k!^4 * (3*k)! * (n-7*k)!), {k,0,n/7}], {n,0,30}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = n!*sum(k=0, n\7, 1/(k!^4*(3*k)!*(n-7*k)!));
A361657
Constant term in the expansion of (1 + x^2 + y^2 + 1/(x*y))^n.
Original entry on oeis.org
1, 1, 1, 1, 13, 61, 181, 421, 1261, 5293, 21421, 73261, 232321, 789361, 2954953, 11127481, 39961741, 139908301, 499315501, 1835933293, 6792310153, 24827506873, 90058277233, 328509505633, 1210097040769, 4473191880961, 16495696956961, 60721903812961
Offset: 0
-
Table[n!*Sum[1/(k!^2*(2*k)!*(n - 4*k)!), {k, 0, n/4}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 20 2023 *)
-
a(n) = n!*sum(k=0, n\4, 1/(k!^2*(2*k)!*(n-4*k)!));
A361673
Constant term in the expansion of (1 + x*y + y*z + z*x + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 61, 361, 1261, 3361, 7561, 34021, 235621, 1294921, 5482621, 19039021, 65345281, 286147681, 1511480881, 7688794681, 34337600281, 138221512741, 554603041441, 2454508134541, 11874549049441, 57412094595241, 261925516443361, 1134301869703861
Offset: 0
-
Table[n! * Sum[1/(k!^3 * (2*k)! * (n-5*k)!), {k,0,n/5}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = n!*sum(k=0, n\5, 1/(k!^3*(2*k)!*(n-5*k)!));
A361677
Constant term in the expansion of (1 + x + y + z + 1/(x*y) + 1/(y*z) + 1/(z*x))^n.
Original entry on oeis.org
1, 1, 1, 19, 73, 181, 1711, 10081, 38809, 256033, 1696861, 8388271, 49449511, 326195299, 1847392093, 10789655059, 69202030969, 418647580489, 2498113460881, 15735859252147, 97919649290053, 598317173139313, 3748943081117323
Offset: 0
-
Table[Sum[(3*k)!/k!^3 * Binomial[3*k,k] * Binomial[n,3*k], {k,0,n/3}], {n,0,25}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = sum(k=0, n\3, (3*k)!/k!^3*binomial(3*k, k)*binomial(n, 3*k));
A361699
Constant term in the expansion of (1 + x^3 + y^3 + 1/(x*y))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 21, 121, 421, 1121, 2521, 6301, 23101, 99001, 386101, 1301301, 3943941, 11779041, 38241841, 136988041, 504616441, 1793870941, 6061831441, 19923689941, 66139128441, 227052188441, 800641330721, 2831644750221, 9870443816221, 33869987735221
Offset: 0
-
Table[Sum[Binomial[2*k,k] * Binomial[5*k,2*k] * Binomial[n,5*k], {k,0,n/5}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = sum(k=0, n\5, binomial(2*k, k)*binomial(5*k, 2*k)*binomial(n, 5*k));
A361700
Constant term in the expansion of (1 + x^4 + y^4 + 1/(x*y))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 31, 211, 841, 2521, 6301, 13861, 30691, 90091, 360361, 1501501, 5645641, 18749641, 56063281, 157520641, 445836901, 1368402421, 4638690211, 16511900791, 58059667051, 195211574251, 625463703151, 1942351017751, 6016826006101, 19113287111101
Offset: 0
-
Table[Sum[Binomial[2*k,k] * Binomial[6*k,2*k] * Binomial[n,6*k], {k,0,n/6}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = sum(k=0, n\6, binomial(2*k, k)*binomial(6*k, 2*k)*binomial(n, 6*k));
A349002
The number of Lyndon words of size n from an alphabet of 4 letters and 1st, 2nd and 3rd letter of the alphabet with equal frequency in the words.
Original entry on oeis.org
1, 1, 0, 2, 6, 12, 34, 120, 354, 1082, 3636, 12270, 40708, 139062, 484866, 1692268, 5944470, 21134808, 75625330, 271720146, 982116648, 3569558058, 13025614962, 47714385708, 175470892468, 647508620070, 2396613522804, 8896422981608, 33114570409896, 123566641829256
Offset: 0
Examples for the alphabet {0,1,2,3}:
a(0)=1 counts (), the empty word.
a(3)=2 counts (021) (012).
a(4)=6 counts (0321) (0231) (0312) (0132) (0213) (0123).
a(5)=12 counts (03321) (03231) (02331) (03312) (03132) (01332) (03213) (02313) (03123) (01323) (02133) (01233).
a(6)=34 counts (020211) (002211) (012021) (002121) (010221) (001221) (033321) (033231) (032331) (023331) (012102) (011202) (002112) (010212) (001212) (033312) (011022) (010122) (001122) (033132) (031332) (013332) (033213) (032313) (023313) (033123) (031323) (013323) (032133) (023133) (031233) (013233) (021333) (012333).
-
a(n) = if(n>0, sumdiv(n, d, moebius(n/d)*sum(k=0, d\3, d!/(k!^3*(d-3*k)!)))/n, n==0) \\ Andrew Howroyd, Jan 14 2023
Showing 1-10 of 10 results.
Comments