A093971
Number of sum-full subsets of {1,...,n}; subsets A such that there is a solution to x+y=z for x,y,z in A.
Original entry on oeis.org
0, 1, 2, 7, 16, 40, 86, 195, 404, 873, 1795, 3727, 7585, 15537, 31368, 63582, 127933, 257746, 517312, 1038993, 2081696, 4173322, 8355792, 16731799, 33484323, 67014365, 134069494, 268234688, 536562699, 1073326281, 2146849378, 4294117419, 8588623348, 17178130162
Offset: 1
The a(1) = 0 through a(5) = 16 subsets:
. {1,2} {1,2} {1,2} {1,2}
{1,2,3} {2,4} {2,4}
{1,2,3} {1,2,3}
{1,2,4} {1,2,4}
{1,3,4} {1,2,5}
{2,3,4} {1,3,4}
{1,2,3,4} {1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The complement is counted by
A007865.
The non-binary version w/o re-usable parts is
A364534, complement
A151897.
The version for partitions is
A363225:
- non-binary without re-usable parts
A237668.
The complement for partitions is
A364345:
- non-binary without re-usable parts
A237667.
-
Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Tuples[#,2]]!={}&]],{n,0,10}] (* Gus Wiseman, Aug 14 2023 *)
A088809
Number of subsets of {1, ..., n} that are not sum-free.
Original entry on oeis.org
0, 0, 0, 1, 3, 10, 27, 67, 154, 350, 763, 1638, 3450, 7191, 14831, 30398, 61891, 125557, 253841, 511818, 1029863, 2069341, 4153060, 8327646, 16687483, 33422562, 66916342, 133936603, 268026776, 536277032, 1072886163, 2146245056, 4293187682, 8587371116
Offset: 0
From _Gus Wiseman_, Aug 10 2023: (Start)
The set S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are all missing from S, so it is not counted under a(8).
The set {1,4,6,7} has pair-sum 1 + 6 = 7, so is counted under a(7).
The a(1) = 0 through a(5) = 10 sets:
. . {1,2,3} {1,2,3} {1,2,3}
{1,3,4} {1,3,4}
{1,2,3,4} {1,4,5}
{2,3,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
(End)
The complement for partitions is
A236912:
The version for partitions is
A237113:
Cf.
A000079,
A007865,
A050291,
A051026,
A103580,
A288728,
A326020,
A326080,
A326083,
A364272,
A364349.
-
Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,10}] (* Gus Wiseman, Aug 10 2023 *)
A364914
Number of subsets of {1..n} such that some element can be written as a nonnegative linear combination of the others.
Original entry on oeis.org
0, 0, 1, 3, 9, 20, 48, 101, 219, 454, 944, 1917, 3925, 7915, 16004, 32188, 64751, 129822, 260489, 521672, 1045060, 2091808, 4187047, 8377255, 16762285, 33531228, 67077485, 134170217, 268371678, 536772231, 1073611321, 2147282291, 4294697258, 8589527163, 17179321094
Offset: 0
The set {3,4,5,17} has 17 = 1*3 + 1*4 + 2*5, so is counted under a(17).
The a(0) = 0 through a(5) = 20 subsets:
. . {1,2} {1,2} {1,2} {1,2}
{1,3} {1,3} {1,3}
{1,2,3} {1,4} {1,4}
{2,4} {1,5}
{1,2,3} {2,4}
{1,2,4} {1,2,3}
{1,3,4} {1,2,4}
{2,3,4} {1,2,5}
{1,2,3,4} {1,3,4}
{1,3,5}
{1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The binary version without re-usable parts is
A088809.
The complement without re-usable parts is
A151897.
The complement is counted by
A326083.
The version without re-usable parts is
A364534.
The version for partitions is
A364913.
Cf.
A011782,
A085489,
A103580,
A116861,
A124506,
A237113,
A237668,
A308546,
A324736,
A326020,
A326080,
A364272,
A364349,
A364756.
-
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Subsets[Range[n]],Or@@Table[combs[#[[k]],Delete[#,k]]!={},{k,Length[#]}]&]],{n,0,10}]
-
from itertools import combinations
from sympy.utilities.iterables import partitions
def A364914(n):
c, mlist = 0, []
for m in range(1,n+1):
t = set()
for p in partitions(m,k=m-1):
t.add(tuple(sorted(p.keys())))
mlist.append([set(d) for d in t])
for k in range(2,n+1):
for w in combinations(range(1,n+1),k):
ws = set(w)
for d in w:
for s in mlist[d-1]:
if s <= ws:
c += 1
break
else:
continue
break
return c # Chai Wah Wu, Nov 17 2023
A365046
Number of subsets of {1..n} containing n such that some element can be written as a nonnegative linear combination of the others.
Original entry on oeis.org
0, 0, 1, 2, 6, 11, 28, 53, 118, 235, 490, 973, 2008, 3990, 8089, 16184, 32563, 65071, 130667, 261183, 523388, 1046748, 2095239, 4190208, 8385030, 16768943, 33546257, 67092732, 134201461, 268400553, 536839090, 1073670970, 2147414967, 4294829905, 8589793931
Offset: 0
The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
. . {1,2} {1,3} {1,4} {1,5}
{1,2,3} {2,4} {1,2,5}
{1,2,4} {1,3,5}
{1,3,4} {1,4,5}
{2,3,4} {2,3,5}
{1,2,3,4} {2,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The positive complement is counted by
A365045, first differences of
A365044.
Without re-usable parts we have
A365069, first differences of
A364534.
A364350 counts combination-free strict partitions, complement
A364839.
A085489 and
A364755 count subsets without the sum of two distinct elements.
A088809 and
A364756 count subsets with the sum of two distinct elements.
A364913 counts combination-full partitions.
-
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combs[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}]
A288728
Number of sum-free sets that can be created by adding n to all sum-free sets [1..n-1].
Original entry on oeis.org
1, 1, 3, 3, 7, 8, 18, 19, 47, 43, 102, 116, 238, 240, 553, 554, 1185, 1259, 2578, 2607, 5873, 5526, 11834, 12601, 24692, 24390, 53735, 52534, 107445, 107330, 218727, 215607, 461367, 427778, 891039, 910294, 1804606, 1706828, 3695418, 3411513, 7136850, 6892950
Offset: 1
1 can be added to {};
2 can be added to {} but not {1};
3 can be added to {},{1},{2};
4 can be added to {},{1},{3} but not {2},{1,3},{2,3}.
From _Gus Wiseman_, Aug 12 2023: (Start)
The a(1) = 1 through a(7) = 18 sum-free sets with maximum n:
{1} {2} {3} {4} {5} {6} {7}
{1,3} {1,4} {1,5} {1,6} {1,7}
{2,3} {3,4} {2,5} {2,6} {2,7}
{3,5} {4,6} {3,7}
{4,5} {5,6} {4,7}
{1,3,5} {1,4,6} {5,7}
{3,4,5} {2,5,6} {6,7}
{4,5,6} {1,3,7}
{1,4,7}
{1,5,7}
{2,3,7}
{2,6,7}
{3,5,7}
{4,5,7}
{4,6,7}
{5,6,7}
{1,3,5,7}
{4,5,6,7}
(End)
For non-binary sum-free subsets of {1..n} we have
A237667.
For sum-free partitions we have
A364345, without re-using parts
A236912.
The complement without re-using parts is
A364756, differences of
A088809.
-
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Tuples[#,2]]=={}&]],{n,10}] (* Gus Wiseman, Aug 12 2023 *)
A365043
Number of subsets of {1..n} whose greatest element can be written as a (strictly) positive linear combination of the others.
Original entry on oeis.org
0, 0, 1, 3, 7, 12, 21, 32, 49, 70, 99, 135, 185, 245, 323, 418, 541, 688, 873, 1094, 1368, 1693, 2092, 2564, 3138, 3810, 4620, 5565, 6696, 8012, 9569, 11381, 13518, 15980, 18872, 22194, 26075, 30535, 35711, 41627, 48473, 56290, 65283, 75533, 87298, 100631, 115911, 133219
Offset: 0
The subset S = {3,4,9} has 9 = 3*3 + 0*4, but this is not strictly positive, so S is not counted under a(9).
The subset S = {3,4,10} has 10 = 2*3 + 1*4, so S is counted under a(10).
The a(0) = 0 through a(5) = 12 subsets:
. . {1,2} {1,2} {1,2} {1,2}
{1,3} {1,3} {1,3}
{1,2,3} {1,4} {1,4}
{2,4} {1,5}
{1,2,3} {2,4}
{1,2,4} {1,2,3}
{1,3,4} {1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{1,4,5}
{2,3,5}
A085489 and
A364755 count subsets with no sum of two distinct elements.
A088809 and
A364756 count subsets with some sum of two distinct elements.
A364350 counts combination-free strict partitions, complement
A364839.
A364913 counts combination-full partitions.
-
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Rest[Subsets[Range[n]]],combp[Last[#],Union[Most[#]]]!={}&]],{n,0,10}]
-
from itertools import combinations
from sympy.utilities.iterables import partitions
def A365043(n):
mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1))
return sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023
A364755
Number of subsets of {1..n} containing n but not containing the sum of any two distinct elements.
Original entry on oeis.org
0, 1, 2, 3, 6, 9, 15, 24, 41, 60, 99, 149, 236, 355, 552, 817, 1275, 1870, 2788, 4167, 6243, 9098, 13433, 19718, 28771, 42137, 60652, 88603, 127555, 185200, 261781, 382931, 541022, 783862, 1096608, 1595829, 2217467, 3223064, 4441073, 6465800, 8893694
Offset: 0
The subset S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are disjoint from S, so it is counted under a(8).
The a(1) = 1 through a(6) = 15 subsets:
{1} {2} {3} {4} {5} {6}
{1,2} {1,3} {1,4} {1,5} {1,6}
{2,3} {2,4} {2,5} {2,6}
{3,4} {3,5} {3,6}
{1,2,4} {4,5} {4,6}
{2,3,4} {1,2,5} {5,6}
{1,3,5} {1,2,6}
{2,4,5} {1,3,6}
{3,4,5} {1,4,6}
{2,3,6}
{2,5,6}
{3,4,6}
{3,5,6}
{4,5,6}
{3,4,5,6}
With re-usable parts we have
A288728.
The complement with n is counted by
A364756, first differences of
A088809.
Cf.
A007865,
A050291,
A054519,
A093971,
A151897,
A236912,
A326020,
A326080,
A326083,
A364272,
A364349,
A364533.
-
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Subsets[#,{2}]]=={}&]],{n,0,10}]
A365045
Number of subsets of {1..n} containing n such that no element can be written as a positive linear combination of the others.
Original entry on oeis.org
0, 1, 1, 2, 4, 11, 23, 53, 111, 235, 483, 988, 1998, 4036, 8114, 16289, 32645, 65389, 130887, 261923, 524014, 1048251, 2096753, 4193832, 8388034, 16776544, 33553622, 67107919, 134216597, 268434140, 536869355, 1073740012, 2147481511, 4294964834, 8589931700
Offset: 0
The subset {3,4,10} has 10 = 2*3 + 1*4 so is not counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
. {1} {2} {3} {4} {5}
{2,3} {3,4} {2,5}
{2,3,4} {3,5}
{1,2,3,4} {4,5}
{2,4,5}
{3,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
Without re-usable parts we have
A365071, first differences of
A151897.
A085489 and
A364755 count subsets w/o the sum of two distinct elements.
A088809 and
A364756 count subsets with the sum of two distinct elements.
A364350 counts combination-free strict partitions, complement
A364839.
A364913 counts combination-full partitions.
-
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[combp[#[[k]],Union[Delete[#,k]]]=={},{k,Length[#]}]&]],{n,0,10}]
A365044
Number of subsets of {1..n} whose greatest element cannot be written as a (strictly) positive linear combination of the others.
Original entry on oeis.org
1, 2, 3, 5, 9, 20, 43, 96, 207, 442, 925, 1913, 3911, 7947, 16061, 32350, 64995, 130384, 261271, 523194, 1047208, 2095459, 4192212, 8386044, 16774078, 33550622, 67104244, 134212163, 268428760, 536862900, 1073732255, 2147472267, 4294953778, 8589918612, 17179850312
Offset: 0
The subset S = {3,5,6,8} has 6 = 2*3 + 0*5 + 0*8 and 8 = 1*3 + 1*5 + 0*6 but neither of these is strictly positive, so S is counted under a(8).
The a(0) = 1 through a(5) = 20 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{3} {3} {3}
{2,3} {4} {4}
{2,3} {5}
{3,4} {2,3}
{2,3,4} {2,5}
{1,2,3,4} {3,4}
{3,5}
{4,5}
{2,3,4}
{2,4,5}
{3,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
A085489 and
A364755 count subsets w/o the sum of two distinct elements.
A088809 and
A364756 count subsets with the sum of two distinct elements.
A364350 counts combination-free strict partitions, complement
A364839.
A364913 counts combination-full partitions.
Cf.
A006951,
A237113,
A237668,
A308546,
A324736,
A326020,
A326080,
A364272,
A364349,
A364534,
A365069.
-
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Subsets[Range[n]],And@@Table[combp[Last[#],Union[Most[#]]]=={},{k,Length[#]}]&]],{n,0,10}]
-
from itertools import combinations
from sympy.utilities.iterables import partitions
def A365044(n):
mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1))
return n+1+sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] not in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023
A365042
Number of subsets of {1..n} containing n such that some element can be written as a positive linear combination of the others.
Original entry on oeis.org
0, 0, 1, 2, 4, 5, 9, 11, 17, 21, 29, 36, 50, 60, 78, 95, 123, 147, 185, 221, 274, 325, 399, 472, 574, 672, 810, 945, 1131, 1316, 1557, 1812, 2137, 2462, 2892, 3322, 3881, 4460, 5176, 5916, 6846, 7817, 8993, 10250, 11765, 13333, 15280, 17308, 19731, 22306
Offset: 0
The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10).
The a(0) = 0 through a(7) = 11 subsets:
. . {1,2} {1,3} {1,4} {1,5} {1,6} {1,7}
{1,2,3} {2,4} {1,2,5} {2,6} {1,2,7}
{1,2,4} {1,3,5} {3,6} {1,3,7}
{1,3,4} {1,4,5} {1,2,6} {1,4,7}
{2,3,5} {1,3,6} {1,5,7}
{1,4,6} {1,6,7}
{1,5,6} {2,3,7}
{2,4,6} {2,5,7}
{1,2,3,6} {3,4,7}
{1,2,3,7}
{1,2,4,7}
Without re-usable parts we have
A365069, first differences of
A364534.
A085489 and
A364755 count subsets with no sum of two distinct elements.
A088314 counts sets that can be linearly combined to obtain n.
A088809 and
A364756 count subsets with some sum of two distinct elements.
A364350 counts combination-free strict partitions, complement
A364839.
A364913 counts combination-full partitions.
-
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combp[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}]
Showing 1-10 of 13 results.
Comments