cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A048103 Numbers not divisible by p^p for any prime p.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Keywords

Comments

If a(n) = Product p_i^e_i then p_i > e_i for all i.
Complement of A100716; A129251(a(n)) = 0. - Reinhard Zumkeller, Apr 07 2007
Density is 0.72199023441955... = Product_{p>=2} (1 - p^-p) where p runs over the primes. - Charles R Greathouse IV, Jan 25 2012
A027748(a(n),k) <= A124010(a(n),k), 1<=k<=A001221(a(n)). - Reinhard Zumkeller, Apr 28 2012
Range of A276086. Also numbers not divisible by m^m for any natural number m > 1. - Antti Karttunen, Nov 18 2024

Examples

			6 = 2^1 * 3^1 is OK but 12 = 2^2 * 3^1 is not.
625 = 5^4 is present because it is not divisible by 5^5.
		

Crossrefs

Complement: A100716.
Positions of 0's in A129251, A342023, A376418, positions of 1's in A327936, A342007, A359550 (characteristic function).
Cf. A048102, A048104, A051674 (p^p), A054743, A054744, A377982 (a left inverse, partial sums of char. fun, see also A328402).
Cf. A276086 (permutation of this sequence, see also A376411, A376413).
Subsequences: A002110, A005117, A006862, A024451 (after its initial 0), A057588, A099308 (after its initial 0), A276092, A328387, A328832, A359547, A370114, A371083, A373848, A377871, A377992.
Disjoint union of {1}, A327934 and A358215.
Also A276078 is a subsequence, from which this differs for the first time at n=451 where a(451)=625, while that value is missing from A276078.

Programs

  • Haskell
    a048103 n = a048103_list !! (n-1)
    a048103_list = filter (\x -> and $
       zipWith (>) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
    -- Reinhard Zumkeller, Apr 28 2012
    
  • Mathematica
    {1}~Join~Select[Range@ 120, Times @@ Boole@ Map[First@ # > Last@ # &, FactorInteger@ #] > 0 &] (* Michael De Vlieger, Aug 19 2016 *)
  • PARI
    isok(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,1] <= f[i,2], return(0))); return(1); \\ Michel Marcus, Nov 13 2020
    
  • PARI
    A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); }; \\ (A359550 is the characteristic function for A048103) - Antti Karttunen, Nov 18 2024
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A048103_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(map(lambda d:d[1]A048103_list = list(islice(A048103_gen(),30)) # Chai Wah Wu, Jan 05 2023
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A048103 (ZERO-POS 1 1 A129251))
    ;; Antti Karttunen, Aug 18 2016
    

Formula

a(n) ~ kn with k = 1/Product_{p>=2}(1 - p^-p) = Product_{p>=2}(1 + 1/(p^p - 1)) = 1.3850602852..., where the product is over all primes p. - Charles R Greathouse IV, Jan 25 2012
For n >= 1, A377982(a(n)) = n. - Antti Karttunen, Nov 18 2024

Extensions

More terms from James Sellers, Apr 22 2000

A024451 a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).

Original entry on oeis.org

0, 1, 5, 31, 247, 2927, 40361, 716167, 14117683, 334406399, 9920878441, 314016924901, 11819186711467, 492007393304957, 21460568175640361, 1021729465586766997, 54766551458687142251, 3263815694539731437539, 201015517717077830328949, 13585328068403621603022853
Offset: 0

Views

Author

Keywords

Comments

Arithmetic derivative of p#: a(n) = A003415(A002110(n)). - Reinhard Zumkeller, Feb 25 2002
(n-1)-st elementary symmetric functions of first n primes; see Mathematica section. - Clark Kimberling, Dec 29 2011
Denominators of the harmonic mean of the first n primes; A250130 gives the numerators. - Colin Barker, Nov 14 2014
Let Pn(n) = A002110 denote the primorial function. The average number of distinct prime factors <= prime(n) in the natural numbers up to Pn(n) is equal to Sum_{i = 1..n} 1/prime(i). - Jamie Morken, Sep 17 2018
Conjecture: All terms are squarefree numbers. - Nicolas Bělohoubek, Apr 13 2022
The above conjecture would imply that for n > 0, gcd(a(n), A369651(n)) = 1. See corollary 2 on the page 4 of Ufnarovski-Åhlander paper. - Antti Karttunen, Jan 31 2024
Apart from the initial 0, a subsequence of A048103. Proof: For all primes p, when i >= A000720(p), neither p itself nor p^p divides a(i) [implied by Henry Bottomley's Sep 27 2006 formula], but neither does p^p divide a(i) when 0 < i < A000720(p), as then p^p > a(i). See A074107, which gives an upper bound for this sequence. - Antti Karttunen, Nov 19 2024

Examples

			0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.

Crossrefs

Denominators are A002110.
Row sums of A077011 and A258566.
Subsequence of A048103 (after the initial 0).
Cf. A053144 (a lower bound), A074107 (an upper bound).
Cf. A109628 (indices k where a(k) is prime), A244622 (corresponding primes), A244621 (a(n) mod 12).
Cf. A369972 (k where prime(1+k)|a(k)), A369973 (corresponding primorials), A293457 (corresponding primes), A377992 (antiderivatives of the terms > 1 of this sequence).

Programs

  • Magma
    [ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ];  // Bruno Berselli, Apr 11 2011
    
  • Maple
    h:= n-> add(1/(ithprime(i)),i=1..n);
    t1:=[seq(h(n),n=0..50)];
    t1a:=map(numer,t1); # A024451
    t1b:=map(denom,t1); # A002110 - N. J. A. Sloane, Apr 25 2014
  • Mathematica
    a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a,18]  (* Jean-François Alcover, Apr 11 2011 *)
    f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A024451 *)
    (* Clark Kimberling, Dec 29 2011 *)
    Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
    
  • Python
    from sympy import prime
    from fractions import Fraction
    def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
    
  • Python
    from math import prod
    from sympy import prime
    def A024451(n):
        q = prod(plist:=tuple(prime(i) for i in range(1,n+1)))
        return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022

Formula

Limit_{n->oo} (Sum_{p <= n} 1/p - log log n) = 0.2614972... = A077761.
a(n) = (Product_{i=1..n} prime(i))*(Sum_{i=1..n} 1/prime(i)). - Benoit Cloitre, Jan 30 2002
(n+1)-st elementary symmetric function of the first n primes.
a(n) = a(n-1)*A000040(n) + A002110(n-1). - Henry Bottomley, Sep 27 2006
From Antti Karttunen, Jan 31 2024, Feb 08 2024 and Nov 19 2024: (Start)
a(0) = 0, for n > 0, a(n) = 2*A203008(n-1) + A070826(n).
For n > 0, a(n) = A327860(A143293(n-1)).
For n > 0, a(n) = A348301(n) + A002110(n).
For n = 3..175, a(n) = A356253(A002110(n)). [See comments in A356253.]
For n >= 0, A053144(n) <= a(n) <= A074107(n) < A070826(1+n).
(End)

Extensions

a(0)=0 prepended by Alois P. Heinz, Jun 26 2015

A377987 Irregular triangle giving on row n all those antiderivatives k of the n-th factorial, for which bigomega(k) > 2.

Original entry on oeis.org

20, 116, 716, 2512, 5036, 40316, 84672, 176364, 1390500, 1782108, 3628773, 3628796, 10529953, 12258673, 76944384, 5338541473, 8944397353, 11690698969, 1236868096, 1849666112, 3096111708, 1004929973233, 54465962625, 1657198101073, 6791831913289, 1307674367996, 5739085040351, 21522396453889, 63577408859233, 104747513922049, 287711613106993, 626768279186209
Offset: 4

Views

Author

Antti Karttunen, Nov 21 2024

Keywords

Comments

Row n lists in ascending order all numbers k whose arithmetic derivative k' [A003415(k)] is equal to the n-th factorial, n! = A000142(n), and that have more than two prime factors with multiplicity, i.e., A001222(k) > 2. Rows of length zero are simply omitted, i.e., when A377986(n) = 0.
Of the initial 32 terms, 16 are odd, and of those 16 odd terms, 11 are squarefree. There are only odd terms on rows 14 and 15, why?

Examples

			Row n    k such that A003415(k) = n! and A001222(k) > 2.
    (no solutions for n = 1..3)
    4:   20;   (20 = 2*2*5, so 20' = 4'*5 + 5'*4 = 4*5 + 1*4 = 24 = 4!)
    5:   116;  (116 = 2*2*29, so 116' = 4*29 + 1*4 = 120 = 5!)
    6:   716;  (716 = 2*2*179, so 716' = 4*179 + 1*4 = 720 = 6!)
    7:   2512, 5036;
    8:   40316;
    9:   84672, 176364; (2^6 * 3^3 * 7^2 and 2^2 * 3^3 * 23 * 71)
   10:   1390500, 1782108, 3628773, 3628796, 10529953, 12258673;
   11:   (no solutions)
   12:   76944384, 5338541473, 8944397353, 11690698969;
   13:   1236868096, 1849666112, 3096111708, 1004929973233;
   14:   54465962625, 1657198101073, 6791831913289;
   15:   1307674367996, 5739085040351, 21522396453889, 63577408859233, 104747513922049, 287711613106993, 626768279186209;
   etc.
Note that although A003415(9) = 6 = 3!, it is not included in this table as 9 is a semiprime, with A001222(9) = 2.
		

Crossrefs

Cf. A000142, A001222, A003415, A377986 (row lengths).
Cf. also A366890, A369240, A377992.

Programs

  • PARI
    \\ Use the programs given in A377987 and A376410.
    \\ the data needs also to be post-processed (sorted) with
    \\ sols = sort_solutions_vector(readvec("a_terms_for_A377987_unsorted.txt"));
    \\ using these functions:
    sort_solutions_vector(v) = vecsort(v,sort_by_A003415_and_magnitude);
    sort_by_A003415_and_magnitude(x,y) = { my(s = sign(A003415(x)-A003415(y))); if(!s, sign(x-y), s); };

A377993 Number of integers whose arithmetic derivative (A003415) is equal to A024451(n), the arithmetic derivative of the n-th primorial.

Original entry on oeis.org

1, 2, 3, 4, 6, 3, 2, 330, 3, 3
Offset: 2

Views

Author

Antti Karttunen, Nov 20 2024

Keywords

Comments

a(n) is the number of natural numbers k such that k' = A003415(k) = A024451(n). The solutions k are listed in A377992.
For 1! = 1, there is an infinite number of integers k for which k' = 1 (all the primes), therefore the starting offset is 2.

Examples

			There is just one number such that A003415(k) = A024451(2) = 5, and that is k=6, therefore a(2) = 1.
There are two numbers such that A003415(k) = A024451(3) = 31, and they are k=30 and k=58, therefore a(3) = 2.
		

Crossrefs

Row lengths of A377992.

Formula

a(n) = A099302(A024451(n)).
a(n) = Sum_{k=1..A002620(A024451(n))} [A003415(k) = A024451(n)], where [ ] is the Iverson bracket.

A378209 Antiderivatives of 334406399, numbers k for which A003415(k) = A024451(9) = A003415(A002110(9)).

Original entry on oeis.org

223092870, 975351895, 1527890095, 1885679383, 2189118743, 2329696457, 2338611863, 3485765789, 4586671213, 5453593183, 5472849253, 5674340053, 8071055747, 8931775397, 9332889127, 9453996491, 9601098443, 10293819917, 12717530039, 17343441881, 18636581773, 19498393573, 20167656703, 23244839627, 23515890737, 23556538969
Offset: 1

Views

Author

Antti Karttunen, Nov 20 2024

Keywords

Comments

Apart from the initial term A002110(9), all other terms are products of three distinct odd primes, A046389. Compare to the comments in A369239.
Note that A024451(9) = 334406399 = 43 * 163 * 47711 == -1 (mod 12). Compare the sequences A369450, A369451 and A369452 to see why there is such a sudden peak in A377993 at n=9, when compared to the nearby terms before and after.
For all n=1..330, A327969(a(n)) <= 7 = A099307(a(n)), because, when we apply A003415 successively, we get: A003415(334406399) -> 9835475 [= A369651(9)] -> 4893565 -> 978718 -> 564671 (which is a prime) -> 1 -> 0.

Crossrefs

Row 9 of irregular triangle A377992.
Subsequence of A099308, and after the initial term, subsequence of A046389.
Showing 1-5 of 5 results.