cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 141 results. Next

A065705 a(n) = Lucas(10*n).

Original entry on oeis.org

2, 123, 15127, 1860498, 228826127, 28143753123, 3461452808002, 425730551631123, 52361396397820127, 6440026026380244498, 792070839848372253127, 97418273275323406890123, 11981655542024930675232002, 1473646213395791149646646123, 181246502592140286475862241127
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 25 2003

Keywords

Comments

Lim_{n->infinity} a(n+1)/a(n) = (123 + sqrt(15125))/2 = 122.9918693812...
Lim_{n->infinity} a(n)/a(n+1) = (123 - sqrt(15125))/2 = 0.00813061875578...
From Peter Bala, Oct 14 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = 1/2*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^10) = 1.0081300769... = 1 + 1/(123 + 1/(15127 + 1/(1860498 + ...))).
Also F(-Phi^10) = 0.9918699143... has the continued fraction representation 1 - 1/(123 - 1/(15127 - 1/(1860498 - ...))) and the simple continued fraction expansion 1/(1 + 1/((123 - 2) + 1/(1 + 1/((15127 - 2) + 1/(1 + 1/((1860498 - 2) + 1/(1 + ...))))))).
F(Phi^10)*F(-Phi^10) = 0.9999338930... has the simple continued fraction expansion 1/(1 + 1/((123^2 - 4) + 1/(1 + 1/((15127^2 - 4) + 1/(1 + 1/((1860498^2 - 4) + 1/(1 + ...))))))).
1/2 + (1/2)*F(Phi^10)/F(-Phi^10) = 1.0081967213... has the simple continued fraction expansion 1 + 1/((123 - 2) + 1/(1 + 1/((1860498 - 2) + 1/(1 + 1/(28143753123 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 228826127 = 123*a(3) - a(2) = 123*1860498 - 15127=((123+sqrt(15125))/2)^4 + ( (123-sqrt(15125))/2)^4 =228826126.99999999562986 + 0.00000000437013 = 228826127.
a(4) = L(10 * 4) = L(40) = 228826127. - _Indranil Ghosh_, Feb 08 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A000032: a(n) = A000032(10*n).
Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A089772 (k = 11), A089775 (k = 12).

Programs

Formula

a(n) = 123*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 123.
a(n) = ((123 + sqrt(15125))/2)^n + ((123 - sqrt(15125))/2)^n.
a(n)^2 = a(2*n) + 2.
G.f.: (2 - 123*x)/(1 - 123*x + x^2). - Philippe Deléham, Nov 18 2008
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(10*n+10)/F(10) - F(10*n-10)/F(10) = A049670(n+1) - A049670(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^10 = [34, 55; 55, 89].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
121*Sum_{n >= 1} 1/(a(n) - 125/a(n)) = 1: (125 = Lucas(10) + 2 and 121 = Lucas(10) - 2)
125*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 121/a(n)) = 1.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 123*x^2 + 15128*x^3 + ... is the o.g.f. for A049670. (End)
E.g.f.: exp((1/2)*(123 - 55*sqrt(5))*x)*(1 + exp(55*sqrt(5)*x)). - Stefano Spezia, Oct 18 2019
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^5 - 5*Lucas(2*n)^3 + 5*Lucas(2*n) = 2*T(5, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (123 - sqrt(15125))/2 )^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(15125) - 123)/2 )^2),
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)

A074058 Reflected tetranacci numbers A073817.

Original entry on oeis.org

4, -1, -1, -1, 7, -6, -1, -1, 15, -19, 4, -1, 31, -53, 27, -6, 63, -137, 107, -39, 132, -337, 351, -185, 303, -806, 1039, -721, 791, -1915, 2884, -2481, 2303, -4621, 7683, -7846, 7087, -11545, 19987, -23375, 22020, -30177, 51519, -66737, 67415, -82374, 133215, -184993, 201567, -232163, 348804
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 16 2002

Keywords

Comments

Also a(n) is the trace of A^(-n), where A is the 4 X 4 matrix ((1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)).

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, "Concrete Mathematics", Addison-Wesley, Reading, MA, 1998.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(4+3*x+2*x^2+x^3)/(1+x+x^2+x^3-x^4), {x, 0, 1}], x]
  • PARI
    polsym(polrecip(1+x+x^2+x^3-x^4), 55) \\ Joerg Arndt, Jan 21 2023

Formula

a(n) = -a(n-1)-a(n-2)-a(n-3)+a(n-4), a(0)=4, a(1)=-1, a(2)=-1, a(3)=-1.
G.f.: (4+3x+2x^2+x^3)/(1+x+x^2+x^3-x^4).
From Peter Bala, Jan 19 2023: (Start)
a(n) = (-1)^n*A073937(n).
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. (End)

A191677 Numbers n such that 1^(n-1)+2^(n-1)+...+n^(n-1) == 0 (mod n).

Original entry on oeis.org

1, 4, 8, 12, 16, 20, 24, 28, 32, 35, 36, 40, 44, 48, 52, 55, 56, 60, 64, 68, 72, 76, 77, 80, 84, 88, 92, 95, 96, 100, 104, 108, 112, 115, 116, 119, 120, 124, 128, 132, 136, 140, 143, 144, 148, 152, 155, 156, 160, 161, 164, 168, 172, 176, 180, 184, 187, 188, 192, 196, 200, 203, 204
Offset: 1

Views

Author

Keywords

Comments

Fermat's little theorem shows that this sequence contains no primes. Related to Giuga's conjecture that the sum is -1 iff n is prime. - Charles R Greathouse IV, Jun 10 2011
Is this is the disjoint union of all multiples of 4 and {1} and A121707 (n^3 divides Sum_{kM. F. Hasler, Jul 22 2019

Crossrefs

Cf. A121707 (n^3 divides Sum_{k

Programs

  • Mathematica
    is191677[n_]:=Mod[Sum[PowerMod[k, n - 1, n], {k, 1, n - 1}], n] == 0;
    Select[Range[300], is191677]
  • PARI
    select( is_A191677(n)=!sum(k=1,n-1,Mod(k,n)^(n-1)), [1..200]) \\ M. F. Hasler, Jul 22 2019

A213382 Numbers n such that n^n mod (n + 2) = n.

Original entry on oeis.org

1, 4, 7, 13, 16, 19, 31, 37, 49, 55, 61, 67, 85, 91, 109, 121, 127, 139, 157, 175, 181, 193, 196, 199, 211, 217, 235, 247, 265, 289, 301, 307, 313, 319, 325, 337, 379, 391, 397, 409, 415, 445, 451, 469, 487, 499, 517, 535, 541, 571, 577, 589, 595, 631, 667, 679
Offset: 1

Author

Alex Ratushnyak, Jun 10 2012

Keywords

Comments

Equivalently, numbers n such that (n^n+2)/(n+2) is an integer. Derek Orr, May 23 2014
It was conjectured that A176003 is a subsequence.
Terms that do not appear in A176003: 16, 61, 193, 196, 313, 397, 691, 729, 769 ...
The conjecture is correct: verify the cases 1 and 3, then it suffices to show that (3p-2)^(3p-2) = 3p-2 mod 3 and mod p. Mod 3 the congruence is 1^(3p-2) = 1, and mod p the congruence is (-2)^(3p-2) = -2 which is true by Fermat's little theorem. - Charles R Greathouse IV, Sep 12 2012
a(62) = 729 is the first number not congruent to 1 mod 3. - Derek Orr, May 23 2014

Examples

			A213381(n) = 7^7 mod 9 = 7, so 7 is in the sequence.
		

Crossrefs

Cf. A213381 : a(n) = n^n mod (n+2).
Cf. A176003.

Programs

  • Mathematica
    Select[Range[700],PowerMod[#,#,#+2]==#&] (* Harvey P. Dale, Oct 03 2015 *)
  • PARI
    is(n)=Mod(n,n+2)^n==n \\ Charles R Greathouse IV, Sep 12 2012
  • Python
    for n in range(999):
        x = n**n % (n+2)
        if x==n:
            print(n, end=", ")
    

A002604 a(n) = n^6 + 1.

Original entry on oeis.org

1, 2, 65, 730, 4097, 15626, 46657, 117650, 262145, 531442, 1000001, 1771562, 2985985, 4826810, 7529537, 11390626, 16777217, 24137570, 34012225, 47045882, 64000001, 85766122, 113379905, 148035890
Offset: 0

Keywords

Comments

Because of Fermat's little theorem, a(n) is never divisible by 7. - Altug Alkan, Apr 08 2016

Crossrefs

Equals A001014 + 1. Cf. A024004, A002522.

Programs

Formula

G.f. (-1 + 5*x - 72*x^2 - 282*x^3 - 317*x^4 - 51*x^5 - 2*x^6) / (x - 1)^7. - R. J. Mathar, Aug 06 2012
Sum_{n>=0} 1/a(n) = 1/2 + Pi * (coth(Pi) + (sinh(Pi) + sqrt(3)*sin(sqrt(3)*Pi)) / (cosh(Pi) - cos(sqrt(3)*Pi))) / 6 = 1.5171007340332164261529... . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} (-1)^n/a(n) = 1/2 + Pi/(6*sinh(Pi)) + Pi * (sqrt(3)*cosh(Pi/2) * sin((sqrt(3)*Pi)/2) + cos((sqrt(3)*Pi)/2) * sinh(Pi/2)) / (3*(cosh(Pi) - cos(sqrt(3)*Pi))) = 0.514210347292695053493... . - Vaclav Kotesovec, Feb 14 2015

A170919 a(n) = denominator of the coefficient c(n) of x^n in (tan x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...

Original entry on oeis.org

1, 1, 3, 3, 5, 45, 105, 315, 2835, 14175, 5775, 467775, 6081075, 2837835, 212837625, 70945875, 3618239625, 97692469875, 206239658625, 9280784638125, 1031198293125, 142924083427125, 322279795963125, 101111706320625, 136968913284328125, 161872352063296875
Offset: 1

Author

N. J. A. Sloane, Jan 30 2010

Keywords

Examples

			1, -1, 7/3, -14/3, 54/5, -1112/45, 6574/105, -48488/315, 1143731/2835, ...
		

Crossrefs

Cf. A170918 (numerators), A170910-A170917.
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.

Programs

  • Maple
    L := 28: g := NULL:
    t := series(tan(x), x, L):
    for n from 1 to L-2 do
       c := coeff(t, x, n);
       t := series(t/(1 + c*x^n), x, L);
       g := g, c;
    od: map(denom, [g]); # Based on Maple in A170918. - Peter Luschny, Oct 05 2019

Extensions

Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022

A201560 a(n) = (Sum(m^(n-1), m=1..n-1) + 1) modulo n.

Original entry on oeis.org

0, 0, 0, 1, 0, 4, 0, 1, 7, 6, 0, 1, 0, 8, 11, 1, 0, 10, 0, 1, 15, 12, 0, 1, 21, 14, 19, 1, 0, 16, 0, 1, 23, 18, 1, 1, 0, 20, 27, 1, 0, 22, 0, 1, 22, 24, 0, 1, 43, 26, 35, 1, 0, 28, 1, 1, 39, 30, 0, 1, 0, 32, 43, 1, 53, 34, 0, 1, 47, 36, 0, 1, 0, 38, 51, 1, 1
Offset: 1

Author

Jonathan Sondow, Jan 11 2012

Keywords

Comments

Equals 0 if n is 1 or a prime, by Fermat's little theorem. It is conjectured that the converse is also true; see A055030, A055032, A204187 and note that a(n) = 0 <==> A055032(n) = 1 <==> A204187(n) = n-1.

Examples

			Sum(m^3, m=1..3) + 1 = 1^3 + 2^3 + 3^3 + 1 = 37 == 1 (mod 4), so a(4) = 1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A17.

Crossrefs

Programs

  • Mathematica
    Table[Mod[Plus @@ PowerMod[Range[n - 1], n - 1, n] + 1, n], {n, 77}] (* Ivan Neretin, Sep 23 2016 *)

Formula

a(prime) = 0 and a(4n) = 1.
a(n) == A204187(n) + 1 (mod n).

A220420 Express the Sum_{n>=0} p(n)*x^n, where p(n) is the partition function, as a product Product_{k>=1} (1 + a(k)*x^k).

Original entry on oeis.org

1, 2, 1, 4, 1, 0, 1, 14, 1, -4, 1, -8, 1, -16, 1, 196, 1, -54, 1, -92, 1, -184, 1, 144, 1, -628, 1, -1040, 1, -2160, 1, 41102, 1, -7708, 1, -12932, 1, -27592, 1, 54020, 1, -98496, 1, -173720, 1, -364720, 1, 853624, 1, -1341970, 1, -2383916, 1, -4918536, 1
Offset: 1

Author

Michel Marcus, Dec 14 2012

Keywords

Comments

This is the PPE (power product expansion) of A000041.
When n is odd, a(n) = 1.
When n is even, a(n) = 2, 4, 0, 14, -4, -8, -16, 196, -54, -92, -184, 144, -628, -1040, -2160, 41102, ...
Alkauskas (2016, Problem 3, p. 3) conjectured that a(8*k+2), a(8*k+4), and a(8*k+6) are all negative, and a(8*k) is positive for k >= 1. [This statement is not wholly true for k = 0.] - Petros Hadjicostas, Oct 07 2019

Programs

  • Mathematica
    terms = 55; sol[0] = {};
    sol[m_] := sol[m] = Join[sol[m - 1], If[OddQ[m], {a[m] -> 1}, First @ Solve[Thread[Table[PartitionsP[n], {n, 0, m}] == CoefficientList[ (Product[1 + a[n]*x^n, {n, 1, m}] /. sol[m - 1]) + O[x]^(m + 1), x]]]]];
    Array[a, terms] /. sol[terms] (* Jean-François Alcover, Dec 06 2018, corrected Oct 03 2019 *)
    (* Second program: *)
    A[m_, n_] := A[m, n] = Which[m == 1, PartitionsP[n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1] ];
    a[n_] := A[n, n];
    a /@ Range[1, 55] (* Jean-François Alcover, Oct 03 2019, using the formula given by Petros Hadjicostas *)
  • PARI
    a(m) = {default(seriesprecision, m+1); ak = vector(m); pol = 1 / eta(x + x * O(x^m)); ak[1] = polcoeff(pol, 1); for (k=2, m, pol = taylor(pol / (1+ak[k-1]*x^(k-1)), x); ak[k] = polcoeff(pol, k, x);); for (k=1, m, print1(ak[k], ", "););}

Formula

From Petros Hadjicostas, Oct 04 2019: (Start)
Define (A(m,n): n,m >= 1) by A(m=1,n) = p(n) = A000041(n) for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then a(n) = A(n,n). [Theorem 3 in Gingold et al. (1988).]
a(n) = Sum_{s|n} s/n + Sum_{s|n, s > 1} (-a(n/s))^s/s. [Eq. (1) in Alkauskas (2008, 2009).]
(End)

A227470 Least k such that n divides sigma(n*k).

Original entry on oeis.org

1, 3, 2, 3, 8, 1, 4, 7, 10, 4, 43, 2, 9, 2, 8, 21, 67, 5, 37, 6, 20, 43, 137, 5, 149, 9, 34, 1, 173, 4, 16, 21, 27, 64, 76, 22, 73, 37, 6, 3, 163, 10, 257, 43, 6, 137, 281, 11, 52, 76, 67, 45, 211, 17, 109, 4, 49, 173, 353, 2, 169, 8, 32, 93, 72, 27, 401, 67
Offset: 1

Author

Alex Ratushnyak, Jul 12 2013

Keywords

Comments

Theorem: a(n) always exists.
Proof: If n is a power of a prime, say n = p^a, then, by Euler's generalization of Fermat's little theorem and the multiplicative property of sigma, one can take k = x^(p^a-p^(a-1)-1) where x is a different prime from p. Similarly. if n = p^a*q^b, then take k = x^(p^a-p^(a-1)-1)*y^(q^b-q^(b-1)-1) where {x,y} are primes different from {p,q}. And so on. These k's have the desired property, and so there is always at least one candidate for the minimal k. - N. J. A. Sloane, May 01 2016

Examples

			Least k such that 9 divides sigma(9*k) is k = 10: sigma(90) = 234 = 9*26. So a(9) = 10.
Least k such that 89 divides sigma(89*k) is k = 1024: sigma(89*1024) = 184230 = 89*2070. So a(89) = 1024.
		

Crossrefs

Indices of 1's: A007691.
See A272349 for the sequence [n*a(n)]. - N. J. A. Sloane, May 01 2016

Programs

  • Maple
    A227470 := proc(n)
        local k;
        for k from 1 do
            if modp(numtheory[sigma](k*n),n) =0 then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, May 06 2016
  • Mathematica
    lknds[n_]:=Module[{k=1},While[!Divisible[DivisorSigma[1,k*n],n],k++];k]; Array[lknds,70] (* Harvey P. Dale, Jul 10 2014 *)
  • PARI
    a227470(n) = {k=1; while(sigma(n*k)%n != 0, k++); k} \\ Michael B. Porter, Jul 15 2013

Formula

a(n) = A272349(n)/n. - R. J. Mathar, May 06 2016

A328186 Write 1/(1 + sin x) = Product_{n>=1} (1 + f_n x^n); a(n) = denominator(f_n).

Original entry on oeis.org

1, 1, 6, 6, 120, 360, 5040, 2520, 72576, 1814400, 39916800, 59875200, 1245404160, 21794572800, 1307674368000, 81729648000, 71137485619200, 3201186852864000, 121645100408832000, 12164510040883200, 10218188434341888000, 281000181944401920000, 25852016738884976640000
Offset: 1

Author

Petros Hadjicostas, Oct 06 2019

Keywords

Comments

The recurrence about (A(m,n): m,n >= 1) in the Formula section follows from Theorem 3 in Gingold et al. (1988); see also Gingold and Knopfmacher (1995, p. 1222). A(m=1,n) equals the n-th coefficient of the Taylor expansion of 1/(1 + sin(x)). For that coefficient, we use a modification of a formula by Peter Luschny in the documentation of sequences A099612 and A099617.
Write 1 + sin x = Product_{n>=1} (1 + g_n * x^n). We have A170914(n) = numerator(g_n) and A170915(n) = denominator(g_n).
Gingold and Knopfmacher (1995) and Alkauskas (2008, 2009) proved that f_n = -g_n for n odd, and Sum_{s|n} (-g_{n/s})^s/s = -Sum_{s|n} (-f_{n/s})^s/s. [We caution that different authors may use -g_n for g_n, or -f_n for f_n, or both.]
Wolfdieter Lang (see the link below) examined inverse power product expansions both for ordinary g.f.'s and for exponential g.f.'s. He connects inverse power product expansions to unital series associated to (infinite dimensional) Witt vectors and to the so-called "Somos transformation".
There are more formulas for f_n and g_n in the references listed below. In all cases, we assume the g.f.'s are unital, i.e., the g.f.'s start with a constant 1.

Examples

			f_n = -1, 1, 1/6, 5/6, 19/120, -47/360, 659/5040, 1837/2520, 7675/72576, -154729/1814400, 3578279/39916800, 3984853/59875200, 95259767/1245404160, ...
		

Crossrefs

Numerators are in A328191.

Programs

  • Maple
    # Calculates the fractions f_n (choose L much larger than M):
    PPE := proc(L, M)
    local t1, t0, g, t2, n, t3;
    if L < 2.5*M then print("Choose larger value for L");
    else
    t1 := 1/(1 + sin(x));
    t0 := series(t1, x, L);
    f := []; t2 := t0;
    for n to M do
    t3 := coeff(t2, x, n);
    t2 := series(t2/(1 + t3*x^n), x, L);
    f := [op(f), t3];
    end do;
    end if;
    [seq(f[n], n = 1 .. nops(f))];
    end proc;
    # Calculates the denominators of f_n:
    h := map(denom, PPE(100, 40)); # Petros Hadjicostas, Oct 06 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
  • Mathematica
    A[m_, n_] :=
      A[m, n] =
       Which[m == 1, 2*(-1)^n*I^(n + 2)*PolyLog[-(n + 1), -I]/n!,
        m > n >= 1, 0, True,
        A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
    a[n_] := Denominator[A[n, n]];
    a /@ Range[1, 55] (* Petros Hadjicostas, Oct 06 2019 using a program by Jean-François Alcover and a formula from A099612 and A099617 *)

Formula

a(2*n + 1) = A170915(2*n + 1) for n >= 0.
Define (A(m,n): n,m >= 1) by A(m=1, n) = 2 * (-1)^n * i^(n + 2) * PolyLog(-(n + 1), -i)/n! for n >= 1 (with i := sqrt(-1)), A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then f_n = A(n,n) and thus a(n) = denominator(A(n,n)).
If we write 1 + sin x = Product_{n>=1} (1 + g_n * x^n) and we know (g_n: n >= 1), then f_n = -g_n + Sum_{s|n, s > 1} (1/s) * ((-f_{n/s})^s + (-g_{n/s})^s). This proves of course that f_n = -g_n for n odd.
Previous Showing 51-60 of 141 results. Next