cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 2635 results. Next

A134867 A010766 * A000012.

Original entry on oeis.org

1, 3, 1, 5, 2, 1, 8, 4, 2, 1, 10, 5, 3, 2, 1, 14, 8, 5, 3, 2, 1, 16, 9, 6, 4, 3, 2, 1, 20, 12, 8, 6, 4, 3, 2, 1, 23, 14, 10, 7, 5, 4, 3, 2, 1, 27, 17, 12, 9, 7, 5, 4, 3, 2, 1, 29, 18, 13, 10, 8, 6, 5, 4, 3, 2, 1, 35, 23, 17, 13, 10, 8, 6, 5, 4, 3, 2, 1, 37, 24, 18, 14, 11, 9, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 14 2007

Keywords

Examples

			First few rows of the triangle:
   1;
   3,  1;
   5,  2,  1;
   8,  4,  2, 1;
  10,  5,  3, 2, 1;
  14,  8,  5, 3, 2, 1;
  16,  9,  6, 4, 3, 2, 1;
  20, 12,  8, 6, 4, 3, 2, 1;
  23, 14, 10, 7, 5, 4, 3, 2, 1;
  27, 17, 12, 9, 7, 5, 4, 3, 2, 1;
  ...
		

Crossrefs

Column k=1..4 give: A006218, A002541, A366968, A366972.
Row sums give A024916.

Programs

  • Mathematica
    t = Table[Sum[Floor[n/h], {h, k, n}], {n, 0, 10}, {k, 1, n}];
    u = Flatten[t]  (* A134867 array *)
    TableForm[t]    (* A134867 sequence *)
    (* Clark Kimberling, Oct 11 2014 *)
  • PARI
    T(n, k) = sum(j=k, n, n\j); \\ Seiichi Manyama, Oct 30 2023

Formula

A010766 * A000012 as infinite lower triangular matrices.
Triangle read by rows, partial row sums of A010766 starting fromt the right.
G.f. of column k: 1/(1-x) * Sum_{j>=1} x^(k*j)/(1-x^j) = 1/(1-x) * Sum_{j>=k} x^j/(1-x^j). - Seiichi Manyama, Oct 30 2023

Extensions

More terms from Seiichi Manyama, Oct 30 2023

A143037 Triangle read by rows, A000012 * A127773 * A000012. A000012 is an infinite lower triangular matrix with all 1's, A127773 = (1; 0,3; 0,0,6; 0,0,0,10; ...).

Original entry on oeis.org

1, 3, 4, 6, 9, 10, 10, 16, 19, 20, 15, 25, 31, 34, 35, 21, 36, 46, 52, 55, 56, 28, 49, 64, 74, 80, 83, 84, 36, 64, 85, 100, 110, 116, 119, 120, 45, 81, 109, 130, 145, 155, 161, 164, 165, 55, 100, 136, 164, 185, 200, 210, 216, 219, 220
Offset: 1

Views

Author

Keywords

Comments

Right border = tetrahedral numbers, left border = triangular numbers.
Alternatively this is the square array A(n,k)
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
4, 9, 16, 25, 36, 49, 64, 81, 100, 121, ...
10, 19, 31, 46, 64, 85, 109, 136, 166, 199, ...
20, 34, 52, 74, 100, 130, 164, 202, 244, 290, ...
35, 55, 80, 110, 145, 185, 230, 280, 335, 395, ...
56, 83, 116, 155, 200, 251, 308, 371, 440, 515, ...
...
read by antidiagonals where A(n,k) = n*(n^2 + 3*k*n + 3*k^2 - 1)/6 is the sum of n triangular numbers starting at A000217(k). - R. J. Mathar, May 06 2015

Examples

			First few rows of the triangle:
   1;
   3,  4;
   6,  9, 10;
  10, 16, 19,  20;
  15, 25, 31,  34,  35;
  21, 36, 46,  52,  55,  56;
  28, 49, 64,  74,  80,  83,  84;
  36, 64, 85, 100, 110, 116, 119, 120;
  ...
		

Crossrefs

Cf. A001296 (row sums).

Programs

  • Maple
    A143037 := proc(n,k)
        k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6 ;
    end proc:
    seq(seq(A143037(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Aug 31 2022
  • Mathematica
    T[n_,k_] = k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6;Table[T[n,k],{n,10},{k,n}]//Flatten (* James C. McMahon, Aug 13 2025 *)

Formula

T(n,k) = k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6. - R. J. Mathar, Aug 31 2022

A143061 Triangle read by rows, A000012 * A127647 * A000012.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 5, 6, 7, 5, 8, 10, 11, 12, 8, 13, 16, 18, 19, 20, 13, 21, 26, 29, 31, 32, 33, 21, 34, 42, 47, 50, 52, 53, 54, 34, 55, 68, 76, 81, 84, 86, 87, 88, 55, 89, 110, 123, 131, 136, 139, 141, 142, 143, 89, 144, 178, 199, 212, 220, 225, 228, 230, 231
Offset: 1

Views

Author

Gary W. Adamson, Jul 20 2008

Keywords

Comments

Row sums = A014286 (1, 3, 9, 21, 46, 94, ...); left border = Fibonacci numbers.

Examples

			First few rows of the triangle are:
  1;
  1,  2;
  2,  3,  4;
  3,  5,  6,  7;
  5,  8, 10, 11, 12;
  8, 13, 16, 18, 19, 20;
  ...
		

Crossrefs

Programs

  • Maple
    seq(seq(combinat:-fibonacci(i+2)-combinat:-fibonacci(i+2-j),j=1..i),i=1..20); # Robert Israel, Nov 06 2016

Formula

From Robert Israel, Nov 06 2016: (Start)
T(n,k) = A000045(n+2) - A000045(n+2-k) for 1 <= k <= n.
G.f. as triangle: x*y*(1+x^2*y)/((1-x*y)*(1-x-x^2)*(1-x*y-x^2*y^2)). (End)

Extensions

Corrected by Dintle N Kagiso, Nov 06 2016

A152205 Triangle read by rows, A000012 * A152204.

Original entry on oeis.org

1, 4, 9, 1, 16, 4, 25, 9, 1, 36, 16, 4, 49, 25, 9, 1, 64, 36, 16, 4, 81, 49, 25, 9, 1, 100, 64, 36, 16, 4, 121, 81, 49, 25, 9, 1, 144, 100, 64, 36, 16, 4, 169, 121, 81, 49, 25, 9, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 29 2008

Keywords

Comments

Row sums = A000292, the tetrahedral numbers.
From Gary W. Adamson, Feb 14 2010: (Start)
Let the triangle = M. Then lim_{n->inf} M^n = A173277 as a left-shifted vector: (1, 4, 13, 32, 74, 152, 298, ...) = A(x), where A(x) satisfies A000290 = A(x)/A(x^2), A000290 = integer squares.
M * [1, 2, 3, ...] = A001752: (1, 4, 11, 24, 46, 80, 130, ...).
M * [1, 3, 6, 10, ...] = A028346: (1, 4, 12, 28, 58, 108, ...). (End)

Examples

			First few rows of the triangle:
    1;
    4;
    9,   1;
   16,   4;
   25,   9,   1;
   36,  16,   4;
   49,  25,   9,   1;
   64,  36,  16,   4;
   81,  49,  25,   9,   1;
  100,  64,  36,  16,   4;
  121,  81,  49,  25,   9,   1;
  144, 100,  64,  36,  16,   4;
  169, 121,  81,  49,  25,   9,   1;
  ...
		

Crossrefs

Formula

A000012 * A152204 = partial sums of A152204 by columns.

A230850 A054541 and A000012 interleaved.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 6, 1, 2, 1, 6, 1, 4, 1, 2, 1, 4, 1, 6, 1, 6, 1, 2, 1, 6, 1, 4, 1, 2, 1, 6, 1, 4, 1, 6, 1, 8, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 14, 1, 4, 1, 6, 1, 2, 1, 10, 1, 2, 1, 6, 1, 6, 1, 4, 1, 6, 1, 6, 1, 2, 1, 10, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Oct 31 2013

Keywords

Comments

a(n) is also the length of the n-th edge of a staircase which represents the function pi(x) on the first quadrant of the square grid, see A000720.
a(2n-1) is the length of the n-th horizontal edge in the staircase.
a(2n) is the length of the n-th vertical edge in the staircase.
For another version see A230849.

Examples

			Illustration of initial terms, n = 1..22:
.
1                                                              _ _|
1                                                  _ _ _ _ _ _|
1                                          _ _ _ _|
1                                      _ _|
1                              _ _ _ _|
1                          _ _|
1                  _ _ _ _|
1              _ _|
1          _ _|
1        _|
1    _ _|
.
.      2 1   2   2       4   2       4   2       4           6   2
.
Drawing vertical line segments below the staircase (as shown below) we have that the number of cells in the vertical bars gives 0 together A000720.
Drawing horizontal line segments above the staircase we have that the number of cells in the k-th horizontal bar is A000040(k).
.    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
31  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
29  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
23  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | |
19  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | |
17  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | |
13  |_ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | |
11  |_ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | |
7   |_ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | |
5   |_ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | |
3   |_ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
2   |_ _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
.    0 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10
.
		

Crossrefs

Programs

  • Mathematica
    Riffle[Join[{2},Differences[Prime[Range[100]]]],1] (* Paolo Xausa, Oct 31 2023 *)
  • PARI
    A230850(n) = if(1==n,2,if((n%2),prime((n+1)/2)-prime(((n+1)/2)-1),1)); \\ Antti Karttunen, Dec 23 2018

Formula

a(1) = 2; for n > 1, a(n) = A230849(n). - Antti Karttunen, Dec 23 2018

A302764 Pascal-like triangle with A000012 as the left border and A080956 as the right border.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 2, -2, 1, 4, 5, 0, -5, 1, 5, 9, 5, -5, -9, 1, 6, 14, 14, 0, -14, -14, 1, 7, 20, 28, 14, -14, -28, -20, 1, 8, 27, 48, 42, 0, -42, -48, -27, 1, 9, 35, 75, 90, 42, -42, -90, -75, -35, 1, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44
Offset: 1

Views

Author

Gregory Gerard Wojnar, Apr 12 2018

Keywords

Comments

Number the rows of the triangle beginning with n=0. For each row construct a degree n polynomial with regularly decreasing powers, denoting the polynomial as f_n(x); e.g., for row 2 we have f_2(x)=1x^2+2x+0. Then construct g_n(x)=x^2*f_{n-1}(x)-(n+1)x+1. It obtains that g_n(x)=(1-x)(2-(1+x)^n). These g_n(x) are the denominators of the generating functions for the following sequences: A024537 (n=2); A195350 (n=3); A301417 (n=4); A301420 (n=5); A301421 (n=6); A301424 (n=7). For these sequences the asymptotic term-to-term ratios are 1/(2^(1/n)-1). The numerators of the generating functions are 1-x(x+1)^(n-1).

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2,  0;
  1, 3,  2, -2;
  1, 4,  5,  0, -5;
  1, 5,  9,  5, -5,  -9;
  1, 6, 14, 14,  0, -14, -14;
  1, 7, 20, 28, 14, -14, -28, -20;
  ...
		

Crossrefs

Programs

  • PARI
    T(n,k) = if (k==0, 1, if (k==n, (n+1)*(2-n)/2, if (k>n, 0, T(n-1,k) + T(n-1,k-1))));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 21 2018

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) with T(n, 0) = 1 and T(n, n) = (n+1)*(2-n)/2.

A118923 Triangle T(n,k) built by placing T(n,0)=A000012(n) in the left edge, T(n,n)=A079978(n) on the right edge and filling the body with the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 3, 3, 2, 0, 1, 4, 6, 5, 2, 0, 1, 5, 10, 11, 7, 2, 1, 1, 6, 15, 21, 18, 9, 3, 0, 1, 7, 21, 36, 39, 27, 12, 3, 0, 1, 8, 28, 57, 75, 66, 39, 15, 3, 1, 1, 9, 36, 85, 132, 141, 105, 54, 18, 4, 0, 1, 10, 45, 121, 217, 273, 246, 159, 72, 22, 4, 0, 1, 11, 55, 166
Offset: 0

Views

Author

Alford Arnold, May 05 2006

Keywords

Comments

The fourth diagonal is 1, 2, 5, 11, 21, ..., which is 1 + A000292. The fifth diagonal is 0, 2, 7, 18, 39, 75, 132, 217, 338, 504, 725, 1012, ..., which is A051743.
The array A007318 is generated by placing A000012 on both edges with the same Pascal-like recurrence, and the array A059259 uses edges defined by A000012 and A059841. - R. J. Mathar, Jan 21 2008
From Michael A. Allen, Nov 30 2021: (Start)
T(n,n-k) is the (n,k)-th entry of the (1/(1-x^3), x/(1-x)) Riordan array.
Sums of rows give A077947.
Sums of antidiagonals give A079962. (End)

Examples

			The table begins
  1
  1  0
  1  1  0
  1  2  1  1
  1  3  3  2  0
  1  4  6  5  2  0
  1  5 10 11  7  2  1
  1  6 15 21 18  9  3  0
		

Crossrefs

Programs

  • Maple
    A000012 := proc(n) 1 ; end: A079978 := proc(n) if n mod 3 = 0 then 1; else 0 ; fi ; end: A118923 := proc(n,k) if k = 0 then A000012(n); elif k = n then A079978(n) ; else A118923(n-1,k)+A118923(n-1,k-1) ; fi ; end: for n from 0 to 15 do for k from 0 to n do printf("%d, ",A118923(n,k)) ; od: od: # R. J. Mathar, Jan 21 2008
  • Mathematica
    Flatten@Table[CoefficientList[Series[1/((1 + x*y + x^2*y^2)(1 - x - x*y)), {x, 0, 23}, {y, 0, 11}], {x, y}][[n + 1, k + 1]], {n, 0, 11}, {k, 0, n}] (* Michael A. Allen, Nov 30 2021 *)

Formula

From Michael A. Allen, Nov 30 2021: (Start)
For 0 <= k < n, T(n,k) = (n-k)*Sum_{j=0..floor(k/3)} binomial(n-3*j,n-k)/(n-3*j).
G.f.: 1/((1+x*y+(x*y)^2)*(1-x-x*y)). (End)

Extensions

Edited and extended by R. J. Mathar, Jan 21 2008
Offset changed by Michael A. Allen, Nov 30 2021

A127949 A000012 as an infinite lower triangular matrix with all 1's; A127899 = a simple transform; then A000012 * A127899. Given A051340, change all 1's to -1. Triangle read by rows, (n-1) -1's followed by "n".

Original entry on oeis.org

1, -1, 2, -1, -1, 3, -1, -1, -1, 4, -1, -1, -1, -1, 5, -1, -1, -1, -1, -1, 6, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -1, -1, -1, -1, 8, -1, -1, -1, -1, -1, -1, -1, -1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 11, -1, -1, -1, -1, -1, -1
Offset: 1

Views

Author

Gary W. Adamson, Feb 09 2007

Keywords

Comments

For the inverse of A127949 see A126615, a harmonic triangle.
This is one way to define an inverse to A000217. - R. J. Mathar, Apr 30 2010

Examples

			First few rows of the triangle are:
1;
-1, 2;
-1, -1, 3;
-1, -1, -1, 4;
...
		

Crossrefs

Programs

  • Maple
    A127949 := proc(n) if issqr(1+8*n) then (sqrt(1+8*n)-1)/2 ; else -1 ; end if; end proc: seq(A127949(n),n=1..120) ; # R. J. Mathar, Apr 30 2010

Extensions

More terms from R. J. Mathar, Apr 30 2010

A128623 Triangle read by rows: A128621 * A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 2, 6, 3, 3, 8, 8, 4, 4, 15, 10, 10, 5, 5, 18, 18, 12, 12, 6, 6, 28, 21, 21, 14, 14, 7, 7, 32, 32, 24, 24, 16, 16, 8, 8, 45, 36, 36, 27, 27, 18, 18, 9, 9, 50, 50, 40, 40, 30, 30, 20, 20, 10, 10, 66, 55, 55, 44, 44, 33, 33, 22, 22, 11, 11, 72, 72, 60, 60, 48, 48, 36, 36, 24, 24, 12, 12, 91, 78, 78, 65, 65, 52, 52, 39, 39, 26, 26, 13, 13
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Examples

			First few rows of the triangle are:
   1;
   2,  2;
   6,  3,  3;
   8,  8,  4,  4;
  15, 10, 10,  5,  5;
  18, 18, 12, 12,  6, 6;
  28, 21, 21, 14, 14, 7, 7;
  ...
		

Crossrefs

Programs

  • Magma
    [n*Floor((n-k+2)/2): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 13 2024
    
  • Mathematica
    Table[n*Floor[(n-k+2)/2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 13 2024 *)
  • SageMath
    flatten([[n*((n-k+2)//2) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 13 2024

Formula

Sum_{k=1..n} T(n, k) = A128624(n) (row sums).
T(n,k) = n*(1+floor((n-k)/2)), 1 <= k <= n. - R. J. Mathar, Jun 27 2012
From G. C. Greubel, Mar 13 2024: (Start)
T(n, k) = n*A115514(n, k).
T(n, k) = Sum_{j=k..n} A128621(n, j).
T(n, 1) = A093005(n).
T(n, 2) = A093353(n-1), n >= 2.
T(n, n) = A000027(n).
T(2*n-1, n) = A245524(n).
Sum_{k=1..n} (-1)^k*T(n, k) = (1/2)*(1-(-1)^n)*A000384(floor((n+1)/2)). (End)

Extensions

a(41) = 27 inserted and more terms from Georg Fischer, Jun 05 2023

A131054 Triangle read by rows: A000012 * A119467 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 3, 4, 7, 1, 1, 3, 9, 7, 11, 1, 1, 4, 9, 22, 11, 16, 1, 1, 4, 16, 22, 46, 16, 22, 1, 1, 5, 16, 50, 46, 86, 22, 29, 1, 1, 5, 25, 50, 130, 86, 148, 29, 37, 1, 1, 6, 25, 95, 130, 296, 148, 239, 37, 46, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 12 2007

Keywords

Comments

Row sums = 2^n.

Examples

			First few rows of the triangle are:
1;
1, 1;
2, 1, 1;
2, 4, 1, 1;
3, 4, 7, 1, 1;
3, 9, 7, 11, 1, 1;
4, 9, 22, 11, 16, 1, 1;
4, 16, 22, 46, 16, 22, 1, 1;
...
		

Crossrefs

Extensions

a(46) = 5 inserted and more terms from Georg Fischer, May 29 2023
Previous Showing 21-30 of 2635 results. Next