A329138
Numbers whose prime signature is a necklace.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83
Offset: 1
The sequence of terms together with their prime signatures begins:
2: (1)
3: (1)
4: (2)
5: (1)
6: (1,1)
7: (1)
8: (3)
9: (2)
10: (1,1)
11: (1)
13: (1)
14: (1,1)
15: (1,1)
16: (4)
17: (1)
18: (1,2)
19: (1)
21: (1,1)
22: (1,1)
Numbers whose reversed binary expansion is a necklace are
A328595.
Numbers whose prime signature is a Lyndon word are
A329131.
Numbers whose prime signature is aperiodic are
A329139.
Cf.
A001037,
A025487,
A056239,
A097318,
A112798,
A118914,
A124010,
A181819,
A304678,
A328596,
A329140.
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Select[Range[2,100],neckQ[Last/@FactorInteger[#]]&]
A051841
Number of binary Lyndon words with an even number of 1's.
Original entry on oeis.org
1, 0, 1, 1, 3, 4, 9, 14, 28, 48, 93, 165, 315, 576, 1091, 2032, 3855, 7252, 13797, 26163, 49929, 95232, 182361, 349350, 671088, 1290240, 2485504, 4792905, 9256395, 17894588, 34636833, 67106816, 130150493, 252641280, 490853403, 954429840, 1857283155, 3616800768, 7048151355, 13743869130, 26817356775
Offset: 1
a(5) = 3 = |{ 00011, 00101, 01111 }|.
- May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
-
a051841 n = (sum $ zipWith (\u v -> gcd 2 u * a008683 u * 2 ^ v)
ds $ reverse ds) `div` (2 * n) where ds = a027750_row n
-- Reinhard Zumkeller, Mar 17 2013
-
a[n_] := Sum[GCD[d, 2]*MoebiusMu[d]*2^(n/d), {d, Divisors[n]}]/(2n);
Table[a[n], {n, 1, 32}]
(* Jean-François Alcover, May 14 2012, from formula *)
-
L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
a(n) = sum(k=0, n, if( (n+k)%2==0, L(n, k), 0 ) ) / n;
vector(33,n,a(n))
/* Joerg Arndt, Jun 28 2012 */
A323858
Number of toroidal necklaces of positive integers summing to n.
Original entry on oeis.org
1, 1, 3, 5, 10, 14, 31, 44, 90, 154, 296, 524, 1035, 1881, 3636, 6869, 13208, 25150, 48585, 93188, 180192, 347617, 673201, 1303259, 2529740, 4910708, 9549665, 18579828, 36192118, 70540863, 137620889, 268655549, 524873503, 1026068477, 2007178821, 3928564237
Offset: 0
Inequivalent representatives of the a(6) = 31 toroidal necklaces:
6 15 24 33 114 123 132 222 1113 1122 1212 11112 111111
.
1 2 3 11 11 12 12 111
5 4 3 13 22 12 21 111
.
1 1 1 2 11
1 2 3 2 11
4 3 2 2 11
.
1 1 1
1 1 2
1 2 1
3 2 2
.
1
1
1
1
2
.
1
1
1
1
1
1
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
Table[Length[Join@@Table[Select[ptnmats[k],neckmatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,10}]
-
U(n,m,k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * subst(k, x, x^lcm(c,d))^(n*m/lcm(c, d))));
a(n)={if(n < 1, n==0, sum(i=1, n, sum(j=1, n\i, polcoef(U(i, j, x/(1-x) + O(x*x^n)), n))))} \\ Andrew Howroyd, Aug 18 2019
A333940
Number of Lyndon factorizations of the k-th composition in standard order.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 5, 1, 2, 2, 4, 1, 4, 2, 7, 1, 2, 1, 4, 1, 2, 1, 7, 1, 2, 2, 4, 2, 5, 2, 7, 1, 2, 3, 9, 2, 5, 2, 12, 1, 2, 1, 4, 1, 2, 2, 7, 1, 2, 1, 4, 1, 2, 1, 11, 1, 2, 2, 4, 2, 5, 2, 7, 1, 4, 4, 11, 2, 5, 2, 12, 1, 2, 2, 4, 1, 7
Offset: 0
We have a(300) = 5, because the 300th composition (3,2,1,3) has the following Lyndon factorizations:
((3,2,1,3))
((1,3),(3,2))
((2),(3,1,3))
((3),(2,1,3))
((2),(3),(1,3))
Binary necklaces are counted by
A000031.
Necklace compositions are counted by
A008965.
Necklaces covering an initial interval are counted by
A019536.
Lyndon compositions are counted by
A059966.
Numbers whose reversed binary expansion is a necklace are
A328595.
Numbers whose prime signature is a necklace are
A329138.
Length of Lyndon factorization of binary expansion is
A211100.
Length of co-Lyndon factorization of binary expansion is
A329312.
Length of co-Lyndon factorization of reversed binary expansion is
A329326.
Length of Lyndon factorization of reversed binary expansion is
A329313.
All of the following pertain to compositions in standard order (
A066099):
- Rotational symmetries are counted by
A138904.
- Constant compositions are
A272919.
- Co-Lyndon compositions are
A326774.
- Aperiodic compositions are
A328594.
- Reversed co-necklaces are
A328595.
- Length of Lyndon factorization is
A329312.
- Length of co-Lyndon factorization is
A334029.
- Combinatory separations are
A334030.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
lynprod[]:={};lynprod[{},b_List]:=b;lynprod[a_List,{}]:=a;lynprod[a_List]:=a;
lynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{lynprod[{a},{x,b}],lynprod[{x,a},{b}]}]],{2,1},Prepend[lynprod[{a},{y,b}],x],{1,2},Prepend[lynprod[{x,a},{b}],y]];
lynprod[a_List,b_List,c__List]:=lynprod[a,lynprod[b,c]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
Table[Length[Select[dealings[stc[n]],lynprod@@#==stc[n]&]],{n,0,100}]
A053656
Number of cyclic graphs with oriented edges on n nodes (up to symmetry of dihedral group).
Original entry on oeis.org
1, 2, 2, 4, 4, 9, 10, 22, 30, 62, 94, 192, 316, 623, 1096, 2122, 3856, 7429, 13798, 26500, 49940, 95885, 182362, 350650, 671092, 1292762, 2485534, 4797886, 9256396, 17904476, 34636834, 67126282, 130150588, 252679832, 490853416
Offset: 1
Jeb F. Willenbring (jwillenb(AT)ucsd.edu), Feb 14 2000
2 at n=3 because there are two such cycles. On (o -> o -> o ->) and (o -> o <- o ->).
- Jeb F. Willenbring, A stability result for a Hilbert series of O_n(C) invariants.
- Seiichi Manyama, Table of n, a(n) for n = 1..3334
- Rémi Cocou Avohou, Joseph Ben Geloun, and Reiko Toriumi, Counting U(N)^{⊗r} ⊗ O(N)^{⊗q} invariants and tensor model observables, Eur. Phys. J. C 84, 839 (2024), see pp. 11, 27; Preprint arXiv:2404.16404 [hep-th], 2024. See pp. 18, 49.
- Paolo Boldi and Sebastiano Vigna, Fibrations of Graphs, Discrete Math., 243 (2002), 21-66.
- Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366. See Table 8.
- T. Pisanski, D. Schattschneider, and B. Servatius, Applying Burnside's lemma to a one-dimensional Escher problem, Math. Mag., 79 (2006), 167-180.
- Jeb F. Willenbring, Home page.
- A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264. See Tables 1 and 2 (and text).
- Index entries for sequences related to bracelets.
-
v:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*2^(n/k); od: t1; end;
h:=n-> if n mod 2 = 0 then (n/2)*2^(n/2); else 0; fi;
A053656:=n->(v(n)+h(n))/(2*n); # N. J. A. Sloane, Nov 11 2006
-
a[n_] := Total[ EulerPhi[#]*2^(n/#)& /@ Divisors[n]]/(2n) + 2^(n/2-2)(1-Mod[n, 2]); Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Nov 21 2011 *)
-
a(n)={(sumdiv(n, d, eulerphi(d)*2^(n/d))/n + if(n%2==0, 2^(n/2-1)))/2} \\ Andrew Howroyd, Jun 16 2021
A323861
Table read by antidiagonals where A(n,k) is the number of n X k aperiodic binary toroidal necklaces.
Original entry on oeis.org
2, 1, 1, 2, 2, 2, 3, 9, 9, 3, 6, 27, 54, 27, 6, 9, 99, 335, 335, 99, 9, 18, 326, 2182, 4050, 2182, 326, 18, 30, 1161, 14523, 52377, 52377, 14523, 1161, 30, 56, 4050, 99858, 698535, 1342170, 698535, 99858, 4050, 56, 99, 14532, 698870, 9586395, 35790267, 35790267, 9586395, 698870, 14532, 99
Offset: 1
Table begins:
1 2 3 4
------------------------
1: | 2 1 2 3
2: | 1 2 9 27
3: | 2 9 54 335
4: | 3 27 335 4050
Inequivalent representatives of the A(3,2) = 9 aperiodic toroidal necklaces:
[0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 1 1] [0 1 1]
[0 0 1] [0 1 1] [0 1 0] [0 1 1] [1 0 1] [1 1 0] [1 1 1] [1 0 1] [1 1 1]
-
# See link for code.
for n in [1..8] do for k in [1..8] do Print(A323861(n,k), ", "); od; Print("\n"); od; # Andrew Howroyd, Aug 21 2019
-
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],And[apermatQ[#],neckmatQ[#]]&]],{n,6},{k,n-1}]
A323865
Number of aperiodic binary toroidal necklaces of size n.
Original entry on oeis.org
1, 2, 2, 4, 8, 12, 36, 36, 114, 166, 396, 372, 1992, 1260, 4644, 8728, 20310, 15420, 87174, 55188, 314064, 399432, 762228, 729444, 5589620, 4026522, 10323180, 19883920, 57516048, 37025580, 286322136, 138547332, 805277760, 1041203944, 2021145660, 3926827224
Offset: 0
Inequivalent representatives of the a(6) = 36 aperiodic necklaces:
000001 000011 000101 000111 001011 001101 001111 010111 011111
.
000 000 001 001 001 001 001 011 011
001 011 010 011 101 110 111 101 111
.
00 00 00 00 00 01 01 01 01
00 01 01 01 11 01 01 10 11
01 01 10 11 01 10 11 11 11
.
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 1
0 0 1 1 0 1 1 1 1
0 1 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1
-
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
zaz[n_]:=Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n]);
Table[If[n==0,1,Length[Union[First/@matcyc/@Select[zaz[n],And[apermatQ[#],neckmatQ[#]]&]]]],{n,0,10}]
A329315
Irregular triangle read by rows where row n gives the sequence of lengths of components of the Lyndon factorization of the first n terms of A000002.
Original entry on oeis.org
1, 2, 3, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 3, 5, 3, 6, 3, 6, 1, 3, 8, 3, 9, 3, 9, 1, 3, 9, 1, 1, 3, 9, 3, 3, 9, 3, 1, 3, 9, 3, 1, 1, 3, 9, 3, 3, 3, 9, 7, 3, 9, 7, 1, 3, 9, 9, 3, 9, 9, 1, 3, 9, 9, 1, 1, 3, 9, 9, 3, 3, 9, 9, 3, 1, 3, 9, 14, 3, 9, 15, 3, 9, 15, 1, 3
Offset: 1
Triangle begins:
1: (1)
2: (2)
3: (3)
4: (3,1)
5: (3,1,1)
6: (3,3)
7: (3,3,1)
8: (3,5)
9: (3,6)
10: (3,6,1)
11: (3,8)
12: (3,9)
13: (3,9,1)
14: (3,9,1,1)
15: (3,9,3)
16: (3,9,3,1)
17: (3,9,3,1,1)
18: (3,9,3,3)
19: (3,9,7)
20: (3,9,7,1)
For example, the first 10 terms of A000002 are (1221121221), with Lyndon factorization (122)(112122)(1), so row 10 is (3,6,1).
Cf.
A000002,
A000031,
A001037,
A027375,
A059966,
A060223,
A088568,
A102659,
A211100,
A288605,
A296372,
A329314,
A329317,
A329325.
-
lynQ[q_]:=Array[Union[{q,RotateRight[q,#1]}]=={q,RotateRight[q,#1]}&,Length[q]-1,1,And];
lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#1]]&]]]];
kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]];
kol[n_Integer]:=Nest[kolagrow,{1},n-1];
Table[Length/@lynfac[kol[n]],{n,100}]
A210109
Number of 3-divided binary sequences (or words) of length n.
Original entry on oeis.org
0, 0, 0, 2, 7, 23, 54, 132, 290, 634, 1342, 2834, 5868, 12140, 24899, 50929, 103735, 210901, 427623, 865910, 1750505, 3535098, 7131321, 14374647, 28952661, 58280123, 117248217, 235770302, 473897980, 952183214, 1912535827, 3840345963, 7709282937, 15472242645, 31045402788, 62280978042
Offset: 1
The two 3-divisible binary words of length 4 and the seven of length 5 are as follows. The periods indicate the division w = x.y.z. For example, 0.01.1 is 3-divided since 0011 < all of 0101, 1010, 0101, 1001, 0110.
0.01.1
0.10.1
0.001.1
0.010.1
0.01.10
0.01.11
0.100.1
0.10.11
0.110.1
- M. Lothaire, Combinatorics on words. A collective work by Dominique Perrin, Jean Berstel, Christian Choffrut, Robert Cori, Dominique Foata, Jean Eric Pin, Guiseppe Pirillo, Christophe Reutenauer, Marcel-P. Schützenberger, Jacques Sakarovitch and Imre Simon. With a foreword by Roger Lyndon. Edited and with a preface by Perrin. Encyclopedia of Mathematics and its Applications, 17. Addison-Wesley Publishing Co., Reading, Mass., 1983. xix+238 pp. ISBN: 0-201-13516-7, MR0675953 (84g:05002). See p. 144.
Number of k-divided words of length n over alphabet of size A:
-
# see link for faster, bit-based version
from itertools import product
def is3div(b):
for i in range(1, len(b)-1):
for j in range(i+1, len(b)):
X, Y, Z = b[:i], b[i:j], b[j:]
if all(b < bp for bp in [Z+Y+X, Z+X+Y, Y+Z+X, Y+X+Z, X+Z+Y]):
return True
return False
def a(n): return sum(is3div("".join(b)) for b in product("01", repeat=n))
print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Aug 27 2021
A333765
Number of co-Lyndon factorizations of the k-th composition in standard order.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 4, 5, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 4, 2, 4, 4, 7, 7, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 5, 2, 5, 2, 4, 4, 9, 4, 7, 7, 12, 11, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 4, 1
Offset: 0
The a(54) = 5, a(61) = 7, and a(237) = 9 factorizations:
((1,2,1,2)) ((1,1,1,2,1)) ((1,1,2,1,2,1))
((1),(2,1,2)) ((1),(1,1,2,1)) ((1),(1,2,1,2,1))
((1,2),(2,1)) ((1,1),(1,2,1)) ((1,1),(2,1,2,1))
((2),(1,2,1)) ((2,1),(1,1,1)) ((1,2,1),(1,2,1))
((1),(2),(2,1)) ((1),(1),(1,2,1)) ((2,1),(1,1,2,1))
((1),(1,1),(2,1)) ((1),(1),(2,1,2,1))
((1),(1),(1),(2,1)) ((1,1),(2,1),(2,1))
((1),(2,1),(1,2,1))
((1),(1),(2,1),(2,1))
Binary necklaces are counted by
A000031.
Necklace compositions are counted by
A008965.
Necklaces covering an initial interval are counted by
A019536.
Lyndon compositions are counted by
A059966.
Numbers whose reversed binary expansion is a necklace are
A328595.
Numbers whose prime signature is a necklace are
A329138.
Length of Lyndon factorization of binary expansion is
A211100.
Length of co-Lyndon factorization of binary expansion is
A329312.
Length of co-Lyndon factorization of reversed binary expansion is
A329326.
Length of Lyndon factorization of reversed binary expansion is
A329313.
All of the following pertain to compositions in standard order (
A066099):
- Rotational symmetries are counted by
A138904.
- Constant compositions are
A272919.
- Co-Lyndon compositions are
A326774.
- Aperiodic compositions are
A328594.
- Reversed co-necklaces are
A328595.
- Length of Lyndon factorization is
A329312.
- Length of co-Lyndon factorization is
A334029.
- Combinatory separations are
A334030.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
colynprod[]:={};colynprod[{},b_List]:=b;colynprod[a_List,{}]:=a;colynprod[a_List]:=a;
colynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{colynprod[{a},{x,b}],colynprod[{x,a},{b}]}]],{1,2},Prepend[colynprod[{a},{y,b}],x],{2,1},Prepend[colynprod[{x,a},{b}],y]];
colynprod[a_List,b_List,c__List]:=colynprod[a,colynprod[b,c]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
Table[Length[Select[dealings[stc[n]],colynprod@@#==stc[n]&]],{n,0,100}]
Comments