cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 1497 results. Next

A191924 Ordered sums 2*f+3*g, where f and g are Lucas numbers (A000032 beginning at 1).

Original entry on oeis.org

5, 9, 11, 14, 15, 17, 18, 20, 23, 25, 26, 27, 29, 31, 34, 35, 39, 41, 43, 45, 47, 48, 55, 56, 57, 60, 61, 62, 67, 68, 69, 70, 76, 79, 89, 90, 91, 93, 95, 97, 101, 103, 106, 109, 112, 115, 123, 127, 143, 145, 147, 148, 149, 155, 161, 163, 164, 173, 177, 181
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2011

Keywords

Crossrefs

Programs

  • Mathematica
    c = 2; d = 3; f[n_] := LucasL[n];
    g[n_] := c*f[n]; h[n_] := d*f[n];
    t[i_, j_] := h[i] + g[j];
    u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
    v = Union[Flatten[u]]    (* A191924 *)
    t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
    u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
    v1 = Union[Flatten[u1]]  (* A191925:c*f(i)-d*f(j) *)
    g1[n_] := d*f[n]; h1[n_] := c*f[n];
    t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
    u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
    v2 = Union[Flatten[u2]]  (* A191926:d*f(i)-c*f(j) *)
    v3 = Union[v1, v2]       (* A191927 *)

A191976 Ordered sums 3*f+4*g, where f and g are Lucas numbers (A000032 beginning at 1).

Original entry on oeis.org

7, 13, 15, 16, 19, 21, 24, 25, 28, 31, 33, 37, 40, 45, 47, 49, 53, 56, 58, 61, 65, 66, 70, 75, 77, 81, 82, 84, 91, 93, 98, 99, 103, 105, 115, 119, 125, 126, 128, 131, 137, 145, 149, 153, 157, 159, 169, 170, 185, 191, 197, 200, 203, 209, 213, 221, 232, 240
Offset: 1

Views

Author

Clark Kimberling, Jun 20 2011

Keywords

Crossrefs

Programs

  • Mathematica
    c = 3; d = 4; f[n_] := LucasL[n];
    g[n_] := c*f[n]; h[n_] := d*f[n];
    t[i_, j_] := h[i] + g[j];
    u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
    v = Union[Flatten[u]]    (* A191976 *)
    t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
    u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
    v1 = Union[Flatten[u1]]  (* A191977: c*f(i)-d*f(j) *)
    g1[n_] := d*f[n]; h1[n_] := c*f[n];
    t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
    u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
    v2 = Union[Flatten[u2]]  (* A191978: d*f(i)-c*f(j) *)
    v3 = Union[v1, v2]       (* A191979 *)

A191980 Ordered sums f+5g, where f and g are Lucas numbers (A000032 beginning at 1).

Original entry on oeis.org

6, 8, 9, 12, 16, 18, 19, 21, 22, 23, 24, 26, 27, 31, 33, 34, 36, 38, 39, 42, 44, 46, 49, 52, 53, 56, 58, 59, 62, 64, 66, 67, 73, 81, 82, 84, 91, 93, 94, 96, 97, 101, 102, 108, 111, 119, 128, 131, 137, 138, 143, 146, 148, 149, 152, 156, 158, 163, 166, 174
Offset: 1

Views

Author

Clark Kimberling, Jun 20 2011

Keywords

Crossrefs

Programs

  • Mathematica
    c = 1; d = 5; f[n_] := LucasL[n];
    g[n_] := c*f[n]; h[n_] := d*f[n];
    t[i_, j_] := h[i] + g[j];
    u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
    v = Union[Flatten[u]]    (* A191980 *)
    t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
    u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
    v1 = Union[Flatten[u1]]  (* A191981: c*f(i)-d*f(j) *)
    g1[n_] := d*f[n]; h1[n_] := c*f[n];
    t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
    u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
    v2 = Union[Flatten[u2]]  (* A191982: d*f(i)-c*f(j) *)
    v3 = Union[v1, v2]       (* A191983 *)
    With[{nn=20},Select[Union[(#[[1]]+5#[[2]]&/@Tuples[LucasL[Range[nn]],2])],#<=LucasL[nn]+5&]] (* Harvey P. Dale, Dec 07 2018 *)

A192045 Ordered sums 3*f+5*g, where f and g are Lucas numbers (A000032 beginning at 1).

Original entry on oeis.org

8, 14, 17, 18, 23, 24, 26, 27, 29, 32, 36, 38, 41, 44, 47, 48, 53, 56, 58, 59, 64, 67, 68, 69, 74, 76, 88, 89, 92, 93, 99, 102, 107, 109, 111, 122, 123, 142, 144, 146, 148, 154, 156, 157, 161, 166, 176, 177, 178, 196, 199, 231, 232, 233, 238, 243, 244, 247
Offset: 1

Views

Author

Clark Kimberling, Jun 21 2011

Keywords

Crossrefs

Programs

  • Mathematica
    c = 3; d = 5; f[n_] := LucasL[n];
    g[n_] := c*f[n]; h[n_] := d*f[n];
    t[i_, j_] := h[i] + g[j];
    u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
    v = Union[Flatten[u]]    (* A192045 *)
    t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
    u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
    v1 = Union[Flatten[u1]]  (* A192046: c*f(i)-d*f(j) *)
    g1[n_] := d*f[n]; h1[n_] := c*f[n];
    t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
    u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
    v2 = Union[Flatten[u2]]  (* A192047: d*f(i)-c*f(j) *)
    v3 = Union[v1, v2]       (* A192048 *)
    Union[3First[#]+5Last[#]&/@Tuples[LucasL[Range[10]],2]] (* Harvey P. Dale, May 04 2012 *)

A192049 Ordered sums 4*f+5*g, where f and g are Lucas numbers (A000032 beginning at 1).

Original entry on oeis.org

9, 17, 19, 21, 24, 27, 31, 32, 33, 36, 39, 43, 47, 48, 49, 51, 59, 63, 64, 67, 71, 77, 79, 83, 87, 92, 94, 99, 102, 106, 107, 118, 121, 127, 131, 134, 136, 149, 151, 157, 161, 162, 171, 173, 189, 193, 203, 206, 208, 217, 223, 239, 243, 247, 251, 261, 263
Offset: 1

Views

Author

Clark Kimberling, Jun 21 2011

Keywords

Crossrefs

Programs

  • Mathematica
    c = 4; d = 5; f[n_] := LucasL[n];
    g[n_] := c*f[n]; h[n_] := d*f[n];
    t[i_, j_] := h[i] + g[j];
    u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
    v = Union[Flatten[u]]    (* A192049 *)
    t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
    u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
    v1 = Union[Flatten[u1]]  (* A192050: c*f(i)-d*f(j) *)
    g1[n_] := d*f[n]; h1[n_] := c*f[n];
    t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
    u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
    v2 = Union[Flatten[u2]]  (* A192051: d*f(i)-c*f(j) *)
    v3 = Union[v1, v2]       (* A192052 *)

A203579 Exponential (or binomial) convolution of A000032 (Lucas) with itself, divided by 2.

Original entry on oeis.org

2, 2, 7, 17, 57, 177, 577, 1857, 6017, 19457, 62977, 203777, 659457, 2134017, 6905857, 22347777, 72318977, 234029057, 757334017, 2450784257, 7930904577, 25664946177, 83053510657, 268766806017, 869747654657, 2814562533377, 9108115685377, 29474481504257
Offset: 0

Views

Author

Wolfdieter Lang, Jan 14 2012

Keywords

Examples

			With A000032 = {2,1,3,4,7,...},
  2*a(4) = 1*2*7 + 4*1*4 + 6*3*3 + 4*4*1 + 1*7*2 = 114.
		

Crossrefs

Programs

  • Mathematica
    Array[Sum[Binomial[#, k] LucasL[k] LucasL[# - k], {k, 0, #}]/2 &, 28, 0] (* Michael De Vlieger, Dec 28 2020 *)

Formula

a(n) = sum(binomial(n,k)*L(k)*L(n-k),k=0..n)/2, n>=0, with L(n)=A000032(n).
E.g.f.: (1/2)*(exp(phi*x)+exp(-(phi-1)*x))^2 =
exp(x)*(cosh(sqrt(5)*x)+1), with the golden section phi:=(1+sqrt(5))/2. (See the e.g.f. of A000032).
a(n) = 2^(n-1)*L(n) + 1.
a(n) = 5*A014335(n) + 2. - Vladimir Reshetnikov, Oct 06 2016

A223486 Lucas entry points: a(n) = least k such that n divides Lucas number L_k (=A000032(k), for k >= 0), or -1 if there is no such k.

Original entry on oeis.org

0, 0, 2, 3, -1, 6, 4, -1, 6, -1, 5, -1, -1, 12, -1, -1, -1, 6, 9, -1, -1, 15, 12, -1, -1, -1, 18, -1, 7, -1, 15, -1, -1, -1, -1, -1, -1, 9, -1, -1, 10, -1, 22, 15, -1, 12, 8, -1, 28, -1, -1, -1, -1, 18, -1, -1, -1, 21, 29, -1, -1, 15, -1, -1, -1, -1, 34, -1
Offset: 1

Views

Author

Casey Mongoven, Mar 20 2013

Keywords

Comments

If one takes L_k, for k >= 1, that is A000204, then a(1) = 1 and a(2) = 3 followed by the given numbers. This fits then with A106291(n) = A253808(n)*a(n), n >= 1 (where in A253808 a negative entry at position n indicates, as in the present sequence, that the Lucas numbers are not divisible by n. For odd primes not dividing any Lucas numbers see A053028. No power 2^m, m >= 3 divides any Lucas number, see, e.g., Vajda, p. 81). - Wolfdieter Lang, Jan 20 2015

Examples

			a(9) = 6 because L_6 = 18 is the first number in the Lucas sequence (A000032) that 9 divides.
		

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 25.
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Cf. A000032, A000204, A001177, A194363, A053028 (primes not dividing any Lucas numbers), A106291, A253808.

Programs

  • Mathematica
    test[n_] := Module[{a, b, t, cnt = 1}, {a, b} = {2, 1}; While[cnt++; t = b; b = Mod[a + b, n]; a = t; ! (b == 0 || {a, b} == {2, 1})]; If[b == 0, cnt, -1]]; Join[{0, 0}, Table[test[i], {i, Range[3, 100]}]] (* T. D. Noe, Mar 22 2013 *)

Extensions

Edited. Added "k >= 0" in the name and added cross references. - Wolfdieter Lang, Jan 20 2015

A256178 Expansion of exp( Sum_{n >= 1} L(2*n)*L(4*n)*x^n/n ), where L(n) = A000032(n) is a Lucas number.

Original entry on oeis.org

1, 21, 385, 6930, 124410, 2232594, 40062659, 718896255, 12900072515, 231482415780, 4153783429236, 74536619356836, 1337505365115205, 24000559953034665, 430672573790340805, 7728105768275278134, 138675231255170368494
Offset: 0

Views

Author

Peter Bala, Mar 18 2015

Keywords

Comments

Let L(n) = A000032(n) denote the n-th Lucas number.
For a fixed positive integer k, the power series expansion of exp( Sum_{n >= 1} L(k*n)x^n/n ) has integer coefficients given by the formula F(k*n)/F(k), where F(n) = A000045(n) [Johnson, 2.22].
The power series expansion of exp( Sum_{n >= 1} L(k*n)*L(2*k*n) *x^n/n ) has integer coefficients given by ( F(k*(n + 1))*F(k*(n + 2))*F(k*(n + 3)) )/( F(k)*F(2*k)*F(3*k) )
The present sequence is the particular case k = 2. See A001655 for the case k = 1.

Crossrefs

Programs

  • Maple
    seq((1/24)*fibonacci(2*n+2)*fibonacci(2*n+4)*fibonacci(2*n+6), n = 0 .. 16);
  • Mathematica
    Table[1/8 * Sum[Fibonacci[2*k + 2]*Fibonacci[6*n - 6*k + 6], {k, 0, n}], {n, 0, 17}] (* or *) RecurrenceTable[{a[n] == 21*a[n - 1] - 56*a[n - 2] + 21*a[n - 3] - a[n - 4], a[1] == 1, a[2] == 21, a[3] == 385, a[4] == 6930}, a, {n, 17}] (* Michael De Vlieger, Mar 18 2015 *)

Formula

a(n) = ( F(2*n + 2)*F(2*n + 4)*F(2*n + 6) )/( F(2)*F(4)*F(6) ).
a(n) = (1/8) * Sum_{k = 0..n} F(2*k + 2)*F(6*n - 6*k + 6).
O.g.f.: 1/( (1 - 3*x + x^2)*(1 - 18*x + x^2) ) = 1/8 * Sum_{n >= 0} F(2*n + 2)*x^n * Sum_{n >= 0} F(6*n + 6)*x^n.
O.g.f. also equals exp( Sum_{n >= 1} trace( M^(2*n) + M^(6*n) )*x^n/n ), where M is the 2X2 matrix [ 1, 1; 1, 0 ].
Recurrences: a(n) = 21*a(n-1) - 56*a(n-2) + 21*a(n-3) - a(n-4).
Also a(0) = 1 and for n >= 1, a(n) = (1/n)*Sum_{k = 1..n} L(2*k)*L(4*k)*a(n-k).
From Peter Bala, Aug 19 2022: (Start)
Sum_{n >= 0} 1/a(n) = 40/3 - 8*Sum_{n >= 1} 1/F(2*n) = 40/3 - 8*A153386.
Sum_{n >= 0} (-1)^n/a(n) = - 88/3 + 40*Sum_{n >= 1} (-1)^(n+1)/F(2*n). Cf. A265288. (End)

A280104 a(n) = smallest prime factor of n-th Lucas number A000032(n), or 1 if there are none.

Original entry on oeis.org

2, 1, 3, 2, 7, 11, 2, 29, 47, 2, 3, 199, 2, 521, 3, 2, 2207, 3571, 2, 9349, 7, 2, 3, 139, 2, 11, 3, 2, 7, 59, 2, 3010349, 1087, 2, 3, 11, 2, 54018521, 3, 2, 47, 370248451, 2, 6709, 7, 2, 3, 6643838879, 2, 29, 3, 2, 7, 119218851371, 2, 11, 47, 2, 3, 709, 2
Offset: 0

Views

Author

Vincenzo Librandi, Dec 26 2016

Keywords

Comments

From Robert Israel, Jan 05 2017: (Start)
If m and n are odd, m > 1 and m | n, then a(n) <= a(m).
a(n) = 2 if and only if 3 | n.
a(n) = 3 if and only if n is in A091999.
a(n) is never 5.
a(n) = 7 if and only if n is in A259755.
a(n) = A000032(n) if and only if n is in A001606.
(End)

Crossrefs

Cf. A000032, A001606, A020639, A079451 (same for largest prime factor), A091999, A139044, A144293, A259755, A279623.
Column k=2 of A238899 (for n>=2).

Programs

  • Magma
    [2,1] cat [Minimum(PrimeDivisors(Lucas(n))): n in [2..60]];
    
  • Maple
    lucas:= n -> combinat:-fibonacci(n+1)+combinat:-fibonacci(n-1):
    spf:= proc(n) local F;
      F:= remove(hastype,ifactors(n,easy)[2],symbol);
      if F <> [] then return min(seq(f[1],f=F)) fi;
    min(numtheory:-factorsec(n))
    end proc:
    spf(1):= 1:
    map(spf @ lucas, [$0..200]); # Robert Israel, Jan 05 2017
  • Mathematica
    f[n_]:=(FactorInteger@LucasL@n)[[1, 1]]; Array[f, 60, 0]
  • PARI
    a000032(n) = fibonacci(n+1)+fibonacci(n-1)
    a(n) = if(a000032(n-1)==1, 1, factor(a000032(n-1))[1, 1]) \\ Felix Fröhlich, Dec 26 2016

Formula

a(n) = A020639(A000032(n)). - Felix Fröhlich, Dec 26 2016

Extensions

Offset changed from Bruno Berselli, Dec 27 2016

A304091 a(n) is the number of the proper divisors of n that are Lucas numbers (A000032, with 2 included).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 3, 2, 3, 1, 3, 1, 3, 3, 3, 1, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 2, 5, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 4, 2, 3, 1, 4, 1, 2, 3, 3, 1, 4, 1, 3, 2, 3, 1, 5, 1, 2, 2, 3, 3, 3, 1, 3, 2, 2, 1, 5, 1, 2, 3, 4, 1, 4, 2, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

  • PARI
    A102460(n) = { my(u1=1,u2=3,old_u1); if(n<=2,sign(n),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304091(n) = sumdiv(n,d,(dA102460(d));

Formula

a(n) = Sum_{d|n, dA102460(d).
a(n) = A304092(n) - A102460(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/2 + A093540 = 2.462858... . - Amiram Eldar, Jul 05 2025
Previous Showing 61-70 of 1497 results. Next