cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A244648 Decimal expansion of the sum of the reciprocals of the hendecagonal numbers (A051682).

Original entry on oeis.org

1, 1, 9, 5, 4, 3, 4, 1, 1, 6, 5, 2, 9, 6, 2, 7, 9, 7, 4, 3, 5, 2, 4, 9, 9, 2, 3, 4, 6, 9, 8, 4, 9, 9, 3, 5, 4, 8, 8, 4, 6, 8, 2, 6, 2, 7, 0, 8, 4, 6, 5, 8, 0, 6, 2, 3, 8, 6, 0, 2, 1, 6, 0, 3, 0, 1, 7, 3, 5, 8, 4, 7, 3, 3, 7, 0, 3, 1, 7, 6, 0, 1, 4, 6, 4, 4, 8, 4, 1, 7, 5, 4, 8, 5, 5, 1, 1, 2, 3, 1, 8, 5, 5, 4, 7
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.195434116529627974352499234698499354884682627084658062386021603017...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[2/(9n^2 - 7n), {n, 1 , Infinity}], 10, 111][[1]]

Formula

Sum_{n=1..infinity} 2/(9n^2 - 7n).
Equals (5*log(3) + Pi*cot(2*Pi/9) - 4*cos(2*Pi/9)*log(cos(Pi/18)) + 4*cos(Pi/9)*log(sin(2*Pi/9)) - 4*log(sin(Pi/9))*sin(Pi/18))/7. - Vaclav Kotesovec, Jul 04 2014

A244641 Decimal expansion of the sum of the reciprocals of the pentagonal numbers (A000326).

Original entry on oeis.org

1, 4, 8, 2, 0, 3, 7, 5, 0, 1, 7, 7, 0, 1, 1, 1, 2, 2, 3, 5, 9, 1, 6, 5, 7, 4, 5, 3, 1, 2, 5, 4, 2, 1, 3, 8, 1, 6, 5, 8, 4, 0, 5, 4, 2, 5, 3, 7, 5, 5, 0, 7, 7, 7, 9, 6, 3, 4, 1, 9, 8, 0, 6, 5, 5, 2, 4, 3, 5, 9, 6, 9, 8, 5, 2, 9, 4, 7, 3, 0, 1, 6, 9, 3, 6, 7, 2, 2, 2, 7, 6, 2, 2, 9, 1, 3, 6, 0, 9, 7, 5, 0, 7, 6, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.482037501770111223591657453125421381658405425375507779634198065524359698529473...
		

Crossrefs

Decimal expansion of the sum of the reciprocals of the m-gonal numbers: A000038 (m=3), A013661 (m=4), this sequence (m=5), A016627 (m=6), A244639 (m=7), A244645 (m=8), A244646 (m=9), A244647 (m=10), A244648 (m=11), A244649 (m=12), A275792 (m=14).

Programs

  • Magma
    SetDefaultRealField(RealField(139)); R:= RealField(); 3*Log(3)-Pi(R)*Sqrt(3)/3; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    RealDigits[Sum[2/(3*n^2-n), {n,1,Infinity}], 10, 111][[1]]
    RealDigits[3*Log[3] - Pi*Sqrt[3]/3, 10, 140][[1]] (* G. C. Greubel, Mar 24 2024 *)
  • SageMath
    numerical_approx(3*log(3)-pi*sqrt(3)/3, digits=139) # G. C. Greubel, Mar 24 2024

Formula

Sum_{n>=1} 2/(3*n^2 - n).
Equals 3*log(3) - Pi*sqrt(3)/3 = A016650 - A093602. - Michel Marcus, Jul 03 2014
Equals 2*A294514. - Hugo Pfoertner, Apr 24 2025

A186501 Decimal expansion of the solution x to x^x = 11.

Original entry on oeis.org

2, 5, 5, 5, 6, 0, 4, 6, 1, 2, 1, 0, 0, 8, 2, 0, 6, 1, 5, 2, 5, 1, 4, 5, 4, 2, 6, 5, 4, 7, 1, 6, 6, 8, 8, 2, 5, 1, 6, 6, 6, 2, 4, 5, 5, 4, 6, 7, 7, 0, 0, 8, 2, 6, 5, 7, 4, 4, 4, 7, 7, 9, 0, 5, 1, 9, 4, 6, 9, 4, 0, 9, 1, 0, 5, 5, 6, 7, 9, 2, 3, 8, 0, 7, 8, 5, 3, 5, 0, 3, 1, 4, 6, 9, 5, 3, 6, 8, 2, 1, 6, 6
Offset: 1

Views

Author

Keywords

Examples

			2.5556046121008206152514542654716688251666246..
		

Crossrefs

Programs

  • Mathematica
    x=11;RealDigits[Log[x]/ProductLog[Log[x]],10,103][[1]]
    RealDigits[x/.FindRoot[x^x==11,{x,2},WorkingPrecision->110]][[1]] (* Harvey P. Dale, Nov 13 2011 *)

A186502 Decimal expansion of the solution x to x^x = 12.

Original entry on oeis.org

2, 6, 0, 0, 2, 9, 5, 0, 0, 0, 0, 5, 3, 9, 1, 5, 5, 8, 7, 7, 1, 7, 2, 0, 8, 2, 2, 1, 9, 4, 1, 1, 6, 9, 9, 1, 6, 4, 3, 7, 8, 3, 7, 7, 1, 0, 1, 0, 8, 3, 8, 8, 2, 0, 0, 2, 3, 2, 6, 1, 9, 5, 4, 9, 8, 2, 5, 9, 1, 5, 1, 6, 1, 4, 7, 5, 0, 4, 2, 2, 4, 8, 2, 2, 5, 3, 8, 6, 3, 8, 8, 1, 7, 7, 7, 4, 1, 9, 1, 0, 4, 9
Offset: 1

Views

Author

Keywords

Examples

			2.6002950000539155877172082219411699164378377..
		

Crossrefs

Programs

  • Mathematica
    x=12;RealDigits[Log[x]/ProductLog[Log[x]],10,103][[1]]

A186503 Decimal expansion of the solution x to x^x = 13.

Original entry on oeis.org

2, 6, 4, 1, 0, 6, 1, 9, 1, 6, 4, 8, 4, 3, 9, 5, 8, 0, 8, 4, 1, 1, 8, 3, 9, 0, 0, 4, 0, 6, 5, 7, 9, 1, 2, 5, 4, 9, 3, 0, 8, 7, 3, 2, 2, 4, 6, 0, 5, 9, 4, 9, 6, 6, 7, 7, 1, 5, 2, 7, 2, 7, 2, 4, 0, 4, 8, 1, 8, 9, 5, 4, 6, 4, 0, 1, 5, 3, 1, 0, 4, 1, 9, 9, 5, 1, 3, 5, 4, 0, 2, 1, 3, 5, 2, 8, 2, 8, 7, 4, 6, 1
Offset: 1

Views

Author

Keywords

Examples

			2.6410619164843958084118390040657912549308732...
		

Crossrefs

Programs

  • Mathematica
    x=13;RealDigits[Log[x]/ProductLog[Log[x]],10,103][[1]]
    RealDigits[x/.FindRoot[x^x==13,{x,2.6},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Feb 07 2025 *)

Formula

Equals log(13)/LambertW(log(13)). - Alois P. Heinz, Jun 16 2021

A186504 Decimal expansion of the solution x to x^x = 14.

Original entry on oeis.org

2, 6, 7, 8, 5, 2, 3, 4, 8, 5, 8, 9, 1, 2, 9, 9, 5, 8, 1, 3, 0, 1, 1, 9, 9, 0, 0, 1, 0, 0, 9, 9, 5, 0, 6, 1, 5, 7, 7, 8, 6, 9, 9, 1, 7, 5, 5, 6, 1, 7, 3, 6, 5, 7, 7, 8, 6, 0, 8, 7, 2, 5, 0, 8, 8, 2, 3, 9, 9, 0, 0, 6, 9, 2, 8, 6, 8, 7, 8, 9, 9, 6, 2, 9, 4, 7, 4, 8, 7, 5, 1, 0, 0, 7, 1, 3, 8, 4, 0, 9, 1, 5
Offset: 1

Views

Author

Keywords

Examples

			2.6785234858912995813011990010099506157786992..
		

Crossrefs

Programs

  • Mathematica
    x=14;RealDigits[Log[x]/ProductLog[Log[x]],10,200][[1]]
    RealDigits[x/.FindRoot[x^x==14,{x,2},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Aug 08 2023 *)

A344930 Decimal expansion of the real solution to x^x = 15.

Original entry on oeis.org

2, 7, 1, 3, 1, 6, 3, 6, 0, 4, 0, 0, 4, 2, 3, 9, 2, 0, 9, 5, 7, 6, 4, 0, 1, 2, 7, 6, 8, 2, 8, 5, 0, 9, 3, 7, 1, 8, 7, 8, 1, 8, 2, 4, 9, 9, 6, 7, 1, 4, 5, 1, 6, 0, 6, 7, 3, 1, 6, 3, 9, 5, 1, 8, 1, 4, 1, 7, 5, 7, 1, 4, 3, 9, 6, 2, 9, 0, 5, 2, 3, 9, 8, 1, 5, 1, 1, 5, 1
Offset: 1

Views

Author

Christoph B. Kassir, Jun 02 2021

Keywords

Comments

2.7131636040042392095764012768285093718781...

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[15]/ProductLog[Log[15]], 10, 100][[1]] (* Amiram Eldar, Jun 02 2021 *)
    RealDigits[x/.FindRoot[x^x==15,{x,2.7},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Apr 18 2022 *)

Formula

Equals log(15)/W(log(15)), where W(z) is the Lambert W Function.

A364895 Decimal expansion of the 4-volume of the unit regular pentachoron (5-cell).

Original entry on oeis.org

0, 2, 3, 2, 9, 2, 3, 7, 4, 7, 6, 5, 6, 2, 2, 8, 0, 9, 3, 3, 7, 5, 9, 5, 5, 5, 9, 0, 4, 9, 2, 8, 4, 1, 2, 7, 4, 5, 2, 5, 0, 6, 4, 4, 1, 2, 4, 5, 9, 5, 3, 3, 9, 2, 9, 6, 1, 1, 5, 5, 1, 7, 9, 6, 3, 9, 6, 9, 2, 9, 2, 6, 3, 0, 8, 7, 2, 7, 1, 3, 4, 3, 6, 8, 9, 0, 0, 1, 5, 0, 0, 8, 7, 2, 7, 8, 9, 8, 2, 0
Offset: 0

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of sqrt(5)/96.
In general, the n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)).

Examples

			Equals 0.02329237476562280933...
		

Crossrefs

Decimal expansion of 4-volumes: this sequence (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), A364896 (120-cell), A364897 (600-cell).
Decimal expansion of the n-volume of the unit regular n-simplex: A120011 (n=2), A020829 (n=3), this sequence (n=4).

Programs

  • Mathematica
    First[RealDigits[Sqrt[5]/96, 10, 100, -1]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    sqrt(5)/96

A061897 Square table by antidiagonals of number of routes of length 2k+n on the sides of a 2n-gon from a point to its opposite point.

Original entry on oeis.org

1, 0, 2, 0, 0, 2, 0, 0, 4, 2, 0, 0, 8, 6, 2, 0, 0, 16, 18, 8, 2, 0, 0, 32, 54, 28, 10, 2, 0, 0, 64, 162, 96, 40, 12, 2, 0, 0, 128, 486, 328, 150, 54, 14, 2, 0, 0, 256, 1458, 1120, 550, 220, 70, 16, 2, 0, 0, 512, 4374, 3824, 2000, 858, 308, 88, 18, 2, 0, 0, 1024, 13122, 13056
Offset: 0

Views

Author

Henry Bottomley, May 14 2001

Keywords

Examples

			Rows start
  1, 0, 0, 0, 0, ...
  2, 0, 0, 0, 0, ...
  2, 4, 8, 16, 32, ...
  2, 6, 18, 54, 162, ...
  2, 8, 28, 96, 328, ...
  ...
		

Crossrefs

Cf. A060995. Rows include A000007, A000038, A000079, A008776, A060995. Columns effectively (i.e. except for a small number of terms) include A040000, A005843, A028552.

Formula

T(0, 0)=1; if n>0, T(n, 0)=2; if k>1, T(n, k)=T(n, k-1)*A061896(n, 1)-T(n, k-2)*A061896(n, 2)+T(n, k-3)*A061896(n, 3)-T(n, k-4)*A061896(n, 4)+...T(n, k-[n/2])*A061896(n, [n/2]); if 0>k T(n, k)=0.

A129479 Triangle read by rows: A054523 * A097806 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 4, 0, 0, 1, 1, 4, 3, 1, 0, 1, 1, 6, 0, 0, 0, 0, 1, 1, 6, 2, 1, 1, 0, 0, 1, 1, 6, 2, 2, 0, 0, 0, 0, 1, 1, 8, 4, 0, 1, 1, 0, 0, 0, 1, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 4, 4, 2, 1, 1, 0, 0, 0, 0, 1, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 17 2007

Keywords

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 1, 1;
  3, 1, 1, 1;
  4, 0, 0, 1, 1;
  4, 3, 1, 0, 1, 1;
  6, 0, 0, 0, 0, 1, 1;
  6, 2, 1, 1, 0, 0, 1, 1;
  ...
		

Crossrefs

Cf. A000010 (alternating row sums), A053158 (row sums).

Programs

  • Magma
    A054523:= func< n,k | n eq 1 select 1 else (n mod k) eq 0 select EulerPhi(Floor(n/k)) else 0 >;
    A129479:= func< n,k | k le n-1 select A054523(n,k) + A054523(n,k+1) else 1 >;
    [A129479(n,k): k in [1..n], n in [1..16]]; // G. C. Greubel, Feb 11 2024
    
  • Mathematica
    A054523[n_, k_]:= If[n==1, 1, If[Divisible[n,k], EulerPhi[n/k], 0]];
    T[n_, k_]:= If[kA054523[n, j+k], {j,0,1}], 1];
    Table[T[n,k],{n,16},{k,n}]//Flatten (* G. C. Greubel, Feb 11 2024 *)
  • SageMath
    def A054523(n,k):
        if (k==n): return 1
        elif (n%k): return 0
        else: return euler_phi(n//k)
    def A129479(n, k):
        if k<0 or k>n: return 0
        elif k==n: return 1
        else: return A054523(n,k) + A054523(n,k+1)
    flatten([[A129479(n, k) for k in range(1,n+1)] for n in range(1,17)]) # G. C. Greubel, Feb 11 2024

Formula

Sum_{k=1..n} T(n, k) = A053158(n) (row sums).
T(n, 1) = A126246(n).
From G. C. Greubel, Feb 11 2024: (Start)
T(n, k) = A054523(n, k) + A054523(n, k+1) for k < n, otherwise 1.
T(2*n-1, n) = A019590(n).
T(2*n, n) = A054977(n).
T(2*n+1, n) = A000038(n).
T(3*n, n) = A063524(n-1).
T(3*n-2, n) = A183918(n+2).
Sum_{k=1..n} (-1)^(k-1) * T(n, k) = A000010(n). (End)
Previous Showing 11-20 of 25 results. Next