cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 139 results. Next

A362253 a(n) is the unique index such that prime A362252(n) divides A231830(a(n)).

Original entry on oeis.org

1, 4, 7, 2, 19, 25, 30, 38, 45, 4, 26, 33, 27, 46, 10, 59, 102, 38, 84, 37, 22, 77, 80, 37, 240, 57, 45, 240, 173, 38, 41, 100, 88, 44, 114, 39, 63, 24, 14, 121, 177, 12, 155, 270, 65, 109, 44, 391, 54, 22, 96, 320, 194, 347, 182, 226, 143, 290, 105, 135, 29, 198, 113, 302, 572, 53, 692, 168, 366
Offset: 1

Views

Author

Max Alekseyev, Apr 21 2023

Keywords

Crossrefs

A092667 a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), with max{x_i}=n.

Original entry on oeis.org

1, 1, 1, 4, 1, 44, 1, 235, 921, 4038, 1, 66147, 1, 304383, 6581754, 45353329, 1, 1100311690, 1, 44423279911, 1250831952086, 284120133400, 1, 71664788693247, 511162204140999, 55479698795314, 10715917223431762, 505603414069366830, 1, 28696102343693431631, 1, 857699266471525509621, 30399386408588668316839, 63063040603038091480
Offset: 1

Views

Author

Max Alekseyev, Mar 02 2004

Keywords

Examples

			a(4) = 4 since there are four fractions 1=1/2+1/4+1/4, 1=1/4+1/2+1/4, 1=1/4+1/4+1/2 and 1=1/4+1/4+1/4+1/4.
		

Crossrefs

Formula

a(n) = A038034(n) - A038034(n-1).
a(n) = 1 if n is prime.

A225669 Slowest-growing sequence of odd primes whose reciprocals sum to 1.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 967, 101419, 2000490719, 106298338760698351, 586903266015193517540253132922939, 3494365451928289992209032562272585187947069047023572601254975717
Offset: 1

Views

Author

Jonathan Sondow, May 11 2013

Keywords

Comments

See comments, references, and links in A075442 = slowest-growing sequence of primes whose reciprocals sum to 1.
a(n) = 3, 5, 7, 11, 13, 17, 19, 23, 967, ..., so A225671(2) = 23.

Examples

			Since 1/3 + 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/23 < 1, the first eight odd primes are members. The ninth is not, because adding 1/29 pushes the sum over 1.
		

References

  • Popular Computing (Calabasas, CA), Problem 175: A Sum of a Different Kind, Vol. 5 (No. 50, May 1977), p. PC50-8.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Block[{sm = Sum[1/(a[i]), {i, n - 1}]}, NextPrime[ Max[ a[n - 1], 1/(1 - sm)]]]; a[0] = 2; Array[a, 14]

A001042 a(n) = a(n-1)^2 - a(n-2)^2.

Original entry on oeis.org

1, 2, 3, 5, 16, 231, 53105, 2820087664, 7952894429824835871, 63248529811938901240357985099443351745, 4000376523371723941902615329287219027543200136435757892789536976747706216384
Offset: 0

Views

Author

Keywords

Comments

The next term has 152 digits. - Franklin T. Adams-Watters, Jun 11 2009

References

  • Archimedeans Problems Drive, Eureka, 27 (1964), 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064236 (numbers of digits).

Programs

  • Haskell
    a001042 n = a001042_list !! n
    a001042_list = 1 : 2 : zipWith (-) (tail xs) xs
                   where xs = map (^ 2) a001042_list
    -- Reinhard Zumkeller, Dec 16 2013
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==a[n-1]^2-a[n-2]^2},a,{n,0,12}] (* Harvey P. Dale, Jan 11 2013 *)

Formula

a(n) ~ c^(2^n), where c = 1.1853051643868354640833201434870139866230288004895868726506278977814490371... . - Vaclav Kotesovec, Dec 17 2014

Extensions

More terms from James Sellers, Sep 19 2000.

A001056 a(n) = a(n-1)*a(n-2) + 1, a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 4, 13, 53, 690, 36571, 25233991, 922832284862, 23286741570717144243, 21489756930695820973683319349467, 500426416062641238759467086706254193219790764168482, 10754042042885415070816603338436200915110904821126871858491675028294447933424899095
Offset: 0

Views

Author

Keywords

References

  • Archimedeans Problems Drive, Eureka, 19 (1957), 13.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001622 (phi), A258112.

Programs

  • GAP
    a:=[1,3];; for n in [3..13] do a[n]:=a[n-1]*a[n-2]+1; od; a; # G. C. Greubel, Sep 19 2019
  • Haskell
    a001056 n = a001056_list !! n
    a001056_list = 1 : 3 : (map (+ 1 ) $
                   zipWith (*) a001056_list $ tail a001056_list)
    -- Reinhard Zumkeller, Aug 15 2012
    
  • Magma
    I:=[1,3]; [n le 2 select I[n] else Self(n-1)*Self(n-2) + 1: n in [1..13]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    a:= proc (n) option remember;
    if n=0 then 1
    elif n=1 then 3
    else a(n-1)*a(n-2) + 1
    end if
    end proc;
    seq(a(n), n = 0..13); # G. C. Greubel, Sep 19 2019
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==3,a[n]==a[n-1]*a[n-2]+1},a,{n,0,14}] (* Harvey P. Dale, Jul 17 2011 *)
    t = {1, 3}; Do[AppendTo[t, t[[-1]] * t[[-2]] + 1], {n, 2, 14}] (* T. D. Noe, Jun 25 2012 *)
  • PARI
    m=13; v=concat([1,3], vector(m-2)); for(n=3, m, v[n]=v[n-1]*v[n-2] +1 ); v \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    def a(n):
        if (n==0): return 1
        elif (n==1): return 3
        else: return a(n-1)*a(n-2) + 1
    [a(n) for n in (0..13)] # G. C. Greubel, Sep 19 2019
    

Formula

a(n) ~ c^(phi^n), where c = A258112 = 1.7978784900091604813559508837..., phi = (1+sqrt(5))/2 = A001622. - Vaclav Kotesovec, Dec 17 2014

A005831 a(n+1) = a(n) * (a(n-1) + 1).

Original entry on oeis.org

0, 1, 1, 2, 4, 12, 60, 780, 47580, 37159980, 1768109008380, 65702897157329640780, 116169884340604934905464739377180, 7632697963609645128663145969343357330533515068777580, 886689639639303288926299195509965193299034793881606681727875910370940270908216401980
Offset: 0

Views

Author

Keywords

Comments

A discrete analog of the derivative of t(x) = tetration base e, since t'(x) = t(x) * t(x-1) * t(x-2) * ... y = y * exp(y) * exp(exp(y)) * ... * t(x) This sequence satisfies almost the same equation but the derivative is replaced by a difference, comparable to the relations between differential equations and their associated difference equations. - Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008

Examples

			a(5) = 12 since 12 = 1*2*4 + 4.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005831 n = a005831_list !! n
    a005831_list = 0:1:zipWith (*) (tail a005831_list) (map succ a005831_list)
    -- Reinhard Zumkeller, Mar 19 2011
  • Mathematica
    a=0;b=1;lst={a,b};Do[c=a*b+b;AppendTo[lst,c];a=b;b=c,{n,18}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 13 2009 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-1](a[n-2]+1)},a,{n,15}] (* Harvey P. Dale, Aug 17 2013 *)

Formula

a(0) = a(1) = 1, a(2) = 2; a(n) = a(n-1)*a(n-2)*a(n-3)*... + a(n-1). - Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008
The sequence grows like a doubly exponential function, similar to Sylvester's sequence. In fact we have the asymptotic form : a(n) ~ e ^ (Phi ^ n) where e and Phi are the best possible constants. - Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A067686 a(n) = a(n-1) * a(n-1) - B * a(n-1) + B, a(0) = 1 + B for B = 7.

Original entry on oeis.org

8, 15, 127, 15247, 232364287, 53993160246468367, 2915261353400811631533974206368127, 8498748758632331927648392184620600167779995785955324343380396911247
Offset: 0

Views

Author

Drastich Stanislav (drass(AT)spas.sk), Feb 05 2002

Keywords

Comments

This is the special case k=7 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005

Crossrefs

Cf. B=1: A000058 (Sylvester's sequence), B=2: A000215 (Fermat numbers), B=3: A000289, B=4: A000324, B=5: A001543, B=6: A001544.
Column k=7 of A177888.

Programs

  • Mathematica
    RecurrenceTable[{a[0]==8, a[n]==a[n-1]*(a[n-1]-7)+7}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 17 2014 *)
    NestList[#^2-7#+7&,8,10] (* Harvey P. Dale, Jan 26 2025 *)

Formula

a(n) ~ c^(2^n), where c = 3.3333858371760195832345950846454963835549715770476958790043961891683146201... . - Vaclav Kotesovec, Dec 17 2014

A081461 Consider the mapping f(a/b) = (a^2+b^3)/(a^3+b^2) from rationals to rationals. Starting with 1/2 (a=1, b=2) and applying the mapping to each new (reduced) rational number gives 1/2, 9/5, 103/377, ... . Sequence gives values of the numerators.

Original entry on oeis.org

1, 9, 103, 26796621, 236092315725004393, 3561970421302126514421966146019939188025056477849165490630219227287
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Comments

For the mapping g(a/b) = (a^2+b)/(a+b^2), starting with 1/2 the same procedure leads to the periodic sequence 1/2, 3/5, 1/2, 3/5, ...

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:=Module[{frac=(a^2+b^3)/(a^3+b^2)},{Numerator[frac], Denominator[ frac]}]; Transpose[NestList[nxt,{1,2},5]][[1]] (* Harvey P. Dale, Nov 09 2011 *)
  • PARI
    {r=1/2; for(n=1,7,a=numerator(r); b=denominator(r); print1(a,","); r=(a^2+b^3)/(a^3+b^2))}

Extensions

Edited and extended by Klaus Brockhaus, Mar 28 2003

A081462 Consider the mapping f(a/b) = (a^2+b^3)/(a^3+b^2) from rationals to rationals. Starting with 1/2 (a=1, b=2) and applying the mapping to each new (reduced) rational number gives 1/2, 9/5, 103/377, ... . Sequence gives values of the denominators.

Original entry on oeis.org

2, 5, 377, 617428, 19241552119440973526245, 6579843627298148620615676439841151690983233028443241
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Crossrefs

Programs

  • PARI
    {r=1/2; for(n=1,7,a=numerator(r); b=denominator(r); print1(b,","); r=(a^2+b^3)/(a^3+b^2))}

Extensions

Edited and extended by Klaus Brockhaus, Mar 28 2003

A081465 Consider the mapping f(a/b) = (a^2+b^2)/(a^2-b^2) from rationals to rationals. Starting with 2/1 (a=2, b=1) and applying the mapping to each new (reduced) rational number gives 2/1, 5/3, 17/8, 353/225, ... . Sequence gives values of the numerators.

Original entry on oeis.org

2, 5, 17, 353, 87617, 9045146753, 60804857528809666817, 4138643330264389621194448797227488932353, 13864359953311401274177801350481278132199085263747363330276605034095638011503617
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2003

Keywords

Comments

For the mapping g(a/b) = (a^2+b)/(a+b^2), starting with 2/1 the same procedure leads to the periodic sequence 2, 5/3, 2, 5/3, ...

Crossrefs

Programs

  • Mathematica
    nxt[n_]:=Module[{a=Numerator[n],b=Denominator[n]}, (a^2+b^2)/(a^2-b^2)]; Numerator/@NestList[nxt,2/1,10]  (* Harvey P. Dale, Mar 19 2011 *)
  • PARI
    {r=2; for(n=1,9,a=numerator(r); b=denominator(r); print1(a,","); r=(a^2+b^2)/(a^2-b^2))}

Extensions

Edited and extended by Klaus Brockhaus, Mar 24 2003
Previous Showing 81-90 of 139 results. Next