cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 401 results. Next

A154753 Reduced period of the Fibonacci 3-step sequence A000073 mod prime(n).

Original entry on oeis.org

4, 13, 31, 16, 110, 56, 96, 120, 553, 140, 331, 469, 560, 308, 46, 52, 3541, 620, 1519, 5113, 1776, 1040, 287, 8011, 3169, 680, 17, 1272, 330, 12883, 1792, 5720, 18907, 1288, 7400, 950, 8269, 54, 9296, 2494, 32221, 10981, 36673, 1552, 3234, 66, 1855
Offset: 1

Views

Author

T. D. Noe, Jan 15 2009

Keywords

Comments

The Fibonacci 3-step (tribonacci) sequence t(k) begins (with offset -2) 1,0,0. For a prime p, the reduced period r is the least number such that p divides both t(r-1) and t(r); i.e., "0,0" appears in the sequence mod p. The ratio of the period A106302 and the reduced period is either 1 or 3; see A154754.

Examples

			The tribonacci sequence (starting with 1) mod 7 begins with the 48 terms 1,1,2,4,0,6,3,2,4,2,1,0,3,4,0,0,4,4,1,2,0,3,5,1,2,1,4,0,5,2,0,0,2,2,4,1, 0,5,6,4,1,4,2,0,6,1,0,0. The first "0,0" terms occur at index 16. Hence a(4)=16.
		

Crossrefs

Formula

a(n) = A046738(prime(n)).

A193991 Number of zeros in the period of Fibonacci 3-step sequence A000073 mod n.

Original entry on oeis.org

1, 2, 4, 3, 6, 8, 12, 4, 9, 12, 10, 12, 18, 9, 24, 4, 5, 18, 27, 18, 48, 10, 24, 16, 10, 12, 15, 9, 5, 48, 13, 6, 40, 5, 72, 27, 16, 18, 72, 24, 14, 36, 10, 15, 54, 48, 5, 16, 30, 20, 20, 12, 5, 30, 60, 9, 108, 4, 60, 72, 45, 26, 36, 10, 108, 40, 19, 5, 96
Offset: 1

Views

Author

T. D. Noe, Aug 18 2011

Keywords

Crossrefs

Cf. A046738.

Programs

  • Mathematica
    n = 3; Table[a = Join[{1}, Table[0, {n - 1}]]; a = Mod[a, i]; a0 = a; k = 0; zeros = 0; While[k++; s = Mod[Plus @@ a, i]; a = RotateLeft[a]; If[s == 0, zeros++]; a[[n]] = s; a != a0]; zeros, {i, 100}]

A337286 a(n) = Sum_{i=0..n} i^2*T(i)^2, where T(i) = A000073(i) is the i-th tribonacci number.

Original entry on oeis.org

0, 0, 4, 13, 77, 477, 2241, 10522, 47386, 204202, 860302, 3546623, 14357567, 57286271, 225714755, 879795380, 3397426356, 13012405492, 49478890936, 186932228945, 702169068945, 2623863676449, 9758799153349, 36140284390030, 133317609306766, 490032600916766, 1795262239190210, 6557012850772931
Offset: 0

Views

Author

N. J. A. Sloane, Sep 12 2020

Keywords

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202. (Note that this paper uses an offset for the tribonacci numbers that is different from that used in A000073.)

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(4-15*x+22*x^2+83*x^3-90*x^4+11*x^5-128*x^6-207*x^7-224*x^8-233*x^9-162*x^10- 147*x^11-58*x^12-3*x^13-4*x^14-x^15)/((1-x)*(1+x+x^2-x^3)^3*(1-3*x-x^2-x^3)^3) )); // G. C. Greubel, Nov 22 2021
    
  • Mathematica
    T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] +T[n-2] +T[n-3]]]; (* A000073 *)
    A337286[n_]:= Sum[j^2*T[j]^2, {j,0,n}];
    Table[A337286[n], {n, 0, 50}] (* G. C. Greubel, Nov 22 2021 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A337286(n): return sum( j^2*T(j)^2 for j in (0..n) )
    [A337286(n) for n in (0..40)] # G. C. Greubel, Nov 22 2021

Formula

G.f.: x^2*(4 - 15*x + 22*x^2 + 83*x^3 - 90*x^4 + 11*x^5 - 128*x^6 - 207*x^7 - 224*x^8 - 233*x^9 - 162*x^10 - 147*x^11 - 58*x^12 - 3*x^13 - 4*x^14 - x^15)/((1-x)*(1 + x + x^2 - x^3)^3*(1 - 3*x - x^2 - x^3)^3). - G. C. Greubel, Nov 22 2021

A349904 Inverse Euler transform of the tribonacci numbers A000073.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 10, 18, 31, 56, 96, 172, 299, 530, 929, 1646, 2893, 5126, 9044, 16028, 28362, 50328, 89249, 158598, 281830, 501538, 892857, 1591282, 2837467, 5064334, 9044023, 16163946, 28906213, 51729844, 92628401, 165967884, 297541263, 533731692, 957921314
Offset: 1

Views

Author

Peter Luschny, Dec 05 2021

Keywords

Crossrefs

Column k=2 of A349802.
Cf. A000073, A057597 (tribonacci numbers for n <= 0), A006206 and A060280.

Programs

  • Maple
    read transforms;  # https://oeis.org/transforms.txt
    arow := len -> EULERi([seq(A000073(n), n = 0..len)]): arow(39);
    # second Maple program:
    t:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3]:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; t(n-1)-b(n, n-1) end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Dec 05 2021
  • Mathematica
    (* EulerInvTransform is defined in A022562. *)
    EulerInvTransform[LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 40]]
  • PARI
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))}
    seq(n) = InvEulerT(Vec(x^2/(1 - x - x^2 - x^3) + O(x^n), -n)) \\ Andrew Howroyd, Dec 05 2021
  • Python
    # After the Maple program of Alois P. Heinz.
    from functools import cache
    from math import comb
    def binomial(n, k):
        if n == -1: return 1
        return comb(n, k)
    @cache
    def A000073(n):
        if n <= 1: return 0
        if n == 2: return 1
        return A000073(n-1) + A000073(n-2) + A000073(n-3)
    @cache
    def b(n, i):
        if n == 0: return 1
        if i <  1: return 0
        return sum(binomial(a(i) + j - 1, j) *
                   b(n - i * j, i - 1) for j in range(1 + n // i))
    @cache
    def a(n): return (A000073(n - 1) - b(n, n - 1))
    print([a(n) for n in range(1, 41)])
    
  • SageMath
    def euler_invtrans(A) :
        L = []; M = []
        for i in range(len(A)) :
            s = (i+1)*A[i] - sum(L[j-1]*A[i-j] for j in (1..i))
            L.append(s)
            s = sum(moebius((i+1)/d)*L[d-1] for d in divisors(i+1))
            M.append(s/(i + 1))
        return M
    @cached_function
    def a(n): return a(n-1) + a(n-2) + a(n-3) if n > 2 else [0,0,1][n]
    print(euler_invtrans([a(n) for n in range(40)]))
    

A357451 Number of compositions (ordered partitions) of n into tribonacci numbers 1,2,4,7,13,24, ... (A000073).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 18, 32, 57, 101, 179, 318, 564, 1002, 1778, 3157, 5603, 9947, 17656, 31342, 55635, 98759, 175308, 311191, 552400, 980571, 1740625, 3089803, 5484750, 9736045, 17282576, 30678512, 54457808, 96668726, 171597851, 304605465, 540708924
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2022

Keywords

Crossrefs

Programs

Formula

G.f.: 1 / (1 - Sum_{k>=3} x^A000073(k)).

A360260 a(0) = 0, and for any n > 0, let k > 0 be as small as possible and such that T(3) + ... + T(2+k) >= n (where T(m) denotes A000073(m), the m-th tribonacci number); a(n) = k + a(T(3) + ... + T(2+k) - n).

Original entry on oeis.org

0, 1, 3, 2, 5, 6, 4, 3, 8, 10, 9, 6, 7, 5, 4, 12, 11, 14, 15, 13, 8, 9, 11, 10, 7, 8, 6, 5, 16, 17, 15, 14, 19, 21, 20, 17, 18, 10, 11, 13, 12, 15, 16, 14, 9, 10, 12, 11, 8, 9, 7, 6, 21, 23, 22, 19, 20, 18, 17, 25, 24, 27, 28, 26, 21, 22, 24, 23, 12, 13, 15
Offset: 0

Views

Author

Rémy Sigrist, Jan 31 2023

Keywords

Comments

See A356895 for the corresponding k's.
See A360259 for the Fibonacci variant.

Examples

			The first terms, alongside the corresponding k's, are:
  n   a(n)  k
  --  ----  ---
   0     0  N/A
   1     1    1
   2     3    2
   3     2    2
   4     5    3
   5     6    3
   6     4    3
   7     3    3
   8     8    4
   9    10    4
  10     9    4
  11     6    4
  12     7    4
  13     5    4
  14     4    4
  15    12    5
		

Crossrefs

Programs

  • PARI
    tribonacci(n) = ([0,1,0; 0,0,1; 1,1,1]^n)[2,1]
    { t = k = 0; print1 (0); for (n = 1, #a = vector(70), if (n > t, t += tribonacci(2+k++);); print1 (", "a[n] = k+if (t==n, 0, a[t-n]));); }

Formula

a(A027084(n)) = n - 1.

A366783 Sum of the divisors of A000073(n) (tribonacci numbers).

Original entry on oeis.org

1, 1, 3, 7, 8, 14, 60, 84, 121, 150, 414, 1560, 1352, 2304, 7239, 12480, 10713, 22400, 67032, 154056, 166560, 334880, 770160, 1322090, 2020564, 3712800, 8461404, 21427200, 17008752, 37733696, 154277568, 219104032, 249664896, 341958960, 1575703584, 1997069256
Offset: 2

Views

Author

Sean A. Irvine, Oct 22 2023

Keywords

Examples

			a(8)=60 because the 8th tribonacci number 24 has divisors {1, 2, 3, 4, 6, 8, 12, 24}.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 36]] (* Amiram Eldar, Oct 23 2023 *)

Formula

a(n) = A000203(A000073(n)).

A075111 a(n) = Sum_{i=0..floor(n/2)} (-1)^(i+floor(n/2))*T(2i+e), where T(n) are tribonacci numbers (A000073) and e = (1/2)(1-(-1)^n).

Original entry on oeis.org

0, 1, 1, 1, 3, 6, 10, 18, 34, 63, 115, 211, 389, 716, 1316, 2420, 4452, 8189, 15061, 27701, 50951, 93714, 172366, 317030, 583110, 1072507, 1972647, 3628263, 6673417, 12274328, 22576008, 41523752, 76374088, 140473849, 258371689
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 01 2002

Keywords

Comments

a(n) is the convolution of T(n) with the sequence (1,0,-1,0,1,0,-1,0,....) A056594.
The number of ways to place non-overlapping Young diagrams of shape (3,1) on an 3 by n rectangle. - Per Alexandersson, Jul 01 2025

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x/(1 - x - 2*x^3 - x^4 - x^5), {x, 0, 40}], x]

Formula

a(n) = a(n-1)+2a(n-3)+a(n-4)+a(n-5), a(0)=0, a(1)=1, a(2)=1, a(3)=1, a(4)=3.
G.f.: x/(1 - x - 2*x^3 - x^4 - x^5).

A075676 Sequences A001644 and A000073 interleaved.

Original entry on oeis.org

3, 1, 3, 2, 11, 7, 39, 24, 131, 81, 443, 274, 1499, 927, 5071, 3136, 17155, 10609, 58035, 35890, 196331, 121415, 664183, 410744, 2246915, 1389537, 7601259, 4700770, 25714875, 15902591, 86992799, 53798080, 294294531, 181997601
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 24 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3+x- 6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[(3+x-6x^2-x^3-x^4)/(1-3x^2-x^4-x^6), {x, 0, 40}], x]
    LinearRecurrence[{0,3,0,1,0,1},{3,1,3,2,11,7},40] (* Harvey P. Dale, May 01 2014 *)
  • PARI
    my(x='x+O('x^40)); Vec((3+x-6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    ((3+x-6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = A000073(n) if n odd, a(n) = A001644(n) if n even.
a(n) = ((1-(-1)^n)*T(n) + (1+(-1)^n)*S(n))/2, where T(n) = A000073(n), S(n) = A001644(n).
a(n) = 3*a(n-2) + a(n-4) + a(n-6), a(0)=3, a(1)=1, a(2)=3, a(3)=2, a(4)=11, a(5)=7.
O.g.f.: (3 + x - 6*x^2 - x^3 - x^4)/(1 - 3*x^2 - x^4 - x^6).
a(n) = T(n) + (1+(-1)^n)*(T(n-1) + (3/2)*T(n-2)).

A130611 Tribonacci numbers A000073 which can be the hypotenuse of a Pythagorean triple.

Original entry on oeis.org

13, 149, 274, 1705, 19513, 35890, 66012, 121415, 755476, 1389537, 4700770
Offset: 1

Views

Author

Jonathan Vos Post, Jun 17 2007

Keywords

Comments

The first 2 values are hypotenuses of primitive Pythagorean triples, A000073 INTERSECTION A020882: (5^2 + 12^2 = 13^2), (51^2 + 140^2 = 149^2). The other values listed have one or more nonprimitive solution: a(6) = 35890 has 13 solutions; a(8), a(9), a(10), a(11) have 4 solutions each.

Examples

			a(4) = 1705 because 1023^2 + 1364^2 = 1705^2, which is a nonprimitive Pythagorean triple 341*(3,4,5).
		

Crossrefs

Formula

A000073 INTERSECTION A009000. {c in A000073 such that there exist integers a, b with a^2 + b^2 = c^2}.
Previous Showing 41-50 of 401 results. Next