cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 401 results. Next

A200541 Product of Fibonacci and tribonacci numbers: a(n) = A000045(n+1)*A000073(n+2).

Original entry on oeis.org

1, 1, 4, 12, 35, 104, 312, 924, 2754, 8195, 24386, 72576, 215991, 642785, 1912960, 5693016, 16942573, 50421592, 150056090, 446571180, 1329008590, 3955167387, 11770690808, 35029911168, 104250013425, 310251009501, 923315841860, 2747814245904, 8177573467339, 24336691577000
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2011

Keywords

Comments

Limit a(n+1)/a(n) = (sqrt(5)+1)/2 * (1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3 = 2.9760284849940...

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 12*x^3 + 35*x^4 + 104*x^5 + 312*x^6 + 924*x^7 + 2754*x^8 +...+ A000045(n+1)*A000073(n+2)*x^n +...
where tribonacci numbers (A000073) begin:
[1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136,5768,10609,...],
and Fibonacci numbers (A000045) begin:
[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,...].
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,fs,ts},fs=Fibonacci[Range[nn]];ts=LinearRecurrence[{1,1,1},{1,1,2},nn];Times@@@Thread[{fs,ts}]] (* or *) LinearRecurrence[ {1,4,5,2,-1,1},{1,1,4,12,35,104},30] (* Harvey P. Dale, Dec 14 2016 *)
  • PARI
    {a(n)=polcoeff((1-x^2-x^3)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6 +x*O(x^n)),n)}
    
  • PARI
    {A000073(n)=polcoeff(x^2/(1-x-x^2-x^3+x^3*O(x^n)),n)}
    {a(n)=fibonacci(n+1)*A000073(n+2)}

Formula

G.f.: (1 - x^2 - x^3) / (1 - x - 4*x^2 - 5*x^3 - 2*x^4 + x^5 - x^6).

A228609 Partial sums of the cubes of the tribonacci sequence A000073.

Original entry on oeis.org

0, 1, 2, 10, 74, 417, 2614, 16438, 101622, 633063, 3941012, 24511836, 152535900, 949133883, 5905611508, 36746590964, 228646935796, 1422699232325, 8852413871022, 55082039340022, 342734883853750, 2132586518002125
Offset: 0

Views

Author

R. J. Mathar, Dec 18 2013

Keywords

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (-1 + 3 x + 11 x^3 - 5 x^4 + x^5 - 3 x^6 + x^7 + 5 x^2)/((x^3 - 5 x^2 + 7 x - 1) (x^6 + 4 x^5 + 11 x^4 + 12 x^3 + 11 x^2 + 4 x + 1) (x - 1)^2), {x, 0, 21}], x] (* Michael De Vlieger, Jan 12 2022 *)
    Accumulate[LinearRecurrence[{1,1,1},{0,1,1},30]^3]  (* or *) LinearRecurrence[ {5,5,25,-58,26,-42,54,-13,1,-3,1},{0,1,2,10,74,417,2614,16438,101622,633063,3941012},30] (* Harvey P. Dale, Sep 11 2022 *)
  • PARI
    T(n)=([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
    a(n) = sum(k=1, n, T(k)^3); \\ Michel Marcus, Jan 12 2022

Formula

a(n) = a(n-1) + (A000073(n))^3.
G.f.: x*(-1+3*x+11*x^3-5*x^4+x^5-3*x^6+x^7+5*x^2) / ( (x^3-5*x^2+7*x-1) *(x^6+4*x^5+11*x^4+12*x^3+11*x^2+4*x+1) *(x-1)^2 )

A274518 Numbers k such that k^2 divides A000073(k).

Original entry on oeis.org

1, 103, 112, 2621, 30576, 77168, 694512, 9919728, 24770928, 55638128, 57268848, 80995824, 1300820976
Offset: 1

Views

Author

Seiichi Manyama, Jun 26 2016

Keywords

Examples

			tribonacci(103) = 331800673921785084815380861 = 103^2 * 31275395788649739354829.
		

Crossrefs

Programs

  • Ruby
    require 'matrix'
    def power(a, n, mod)
      return Matrix.I(a.row_size) if n == 0
      m = power(a, n >> 1, mod)
      m = (m * m).map{|i| i % mod}
      return m if n & 1 == 0
      (m * a).map{|i| i % mod}
    end
    def f(m, n, mod)
      ary0 = Array.new(m, 0)
      ary0[0] = 1
      v = Vector.elements(ary0)
      ary1 = [Array.new(m, 1)]
      (0..m - 2).each{|i|
        ary2 = Array.new(m, 0)
        ary2[i] = 1
        ary1 << ary2
      }
      a = Matrix[*ary1]
      (power(a, n, mod) * v)[m - 1]
    end
    p (1..10 ** 6).select{|i| f(3, i, i * i) == 0}

Extensions

a(9)-a(13) from Chai Wah Wu, Jan 29 2018

A292397 p-INVERT of the tribonacci numbers (A000073(k), k>=2), where p(S) = 1 - S - S^2 - S^3.

Original entry on oeis.org

1, 3, 10, 33, 108, 352, 1144, 3714, 12050, 39084, 126752, 411041, 1332923, 4322363, 14016392, 45451793, 147389276, 477948252, 1549872500, 5025868667, 16297700769, 52849583211, 171378684824, 555740504324, 1802134907175, 5843896942499, 18950374573538
Offset: 0

Views

Author

Clark Kimberling, Sep 18 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

Crossrefs

Programs

  • Magma
    I:=[1,3,10,33,108,352,1144,3714,12050]; [n le 9 select I[n] else 4*Self(n-1)-Self(n-2)-3*Self(n-3)-7*Self(n-4)+2*Self(n-5)+6*Self(n-6)+7*Self(n-7)+3*Self(n-8)+Self(n-9): n in [1..30]]; // Vincenzo Librandi, Oct 13 2017
  • Mathematica
    z = 60; s = x/(1 - x - x^2 - x^3); p = 1 - s - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000073 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292397 *)
    LinearRecurrence[{4, -1, -3, -7, 2, 6, 7, 3, 1}, {1, 3, 10, 33, 108, 352, 1144, 3714, 12050}, 30] (* Vincenzo Librandi, Oct 13 2017 *)
  • PARI
    x='x+O('x^99); Vec(((1+x+x^2)*(1-2*x+x^3+x^4))/(1-4*x+x^2+3*x^3+7*x^4-2*x^5-6*x^6-7*x^7-3*x^8-x^9)) \\ Altug Alkan, Oct 04 2017
    

Formula

G.f.: -(((1 + x + x^2) (1 - 2 x + x^3 + x^4))/(-1 + 4 x - x^2 - 3 x^3 - 7 x^4 + 2 x^5 + 6 x^6 + 7 x^7 + 3 x^8 + x^9)).
a(n) = 4*a(n-1) - a(n-2) - 3*a(n-3) - 7*a(n-4) + 2*a(n-5) + 6*a(n-6) + 7*a(n-7) + 3*a(n-8) + a(n-9) for n >= 10.

A299156 Numbers k such that k*(k+1) divides tribonacci(k) (A000073(k)).

Original entry on oeis.org

1, 256, 397, 1197, 8053, 8736, 9901, 32173, 33493, 33757, 38461, 48757, 56101, 57073, 64153, 76561, 79693, 87517, 100608, 102217, 105253, 105601, 105913, 105997, 107713, 108553, 110976, 116293, 123121, 131437, 138517, 143137, 147541, 151237, 156601, 171253
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Comments

A subsequence of A232570.

Examples

			tribonacci(256) = 10285895715599251294835119279496333059462348558276025598603904254464 = 256 * 257 * 156339611436029476149609668037091638184921397104146789862048642.
		

Crossrefs

Programs

  • Maple
    with(LinearAlgebra[Modular]):
    T:= (n, m)-> MatrixPower(m, Mod(m, <<0|1|0>,
        <0|0|1>, <1|1|1>>, float[8]), n)[1, 3]:
    a:= proc(n) option remember; local i, k, ok;
          if n=1 then 1 else
            for k from 1+a(n-1) do ok:= true;
              for i in ifactors(k*(k+1))[2] while ok do
                ok:= is(T(k, i[1]^i[2])=0)
              od; if ok then break fi
            od; k
          fi
        end:
    seq(a(n), n=1..10);  # Alois P. Heinz, Feb 06 2018
  • Mathematica
    a = b = 0; c = d = 1; k = 2; lst = {1}; While[k < 171255, If[ Mod[c, k (k + 1)] == 0, AppendTo[lst, k]]; a = b; b = c; c = d; d = a + b + c; k++] (* Robert G. Wilson v, Feb 07 2018 *)

A308189 Numbers of the form t_n or t_n + t_{n+1} where {t_n} are the tribonacci numbers A000073.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 11, 13, 20, 24, 37, 44, 68, 81, 125, 149, 230, 274, 423, 504, 778, 927, 1431, 1705, 2632, 3136, 4841, 5768, 8904, 10609, 16377, 19513, 30122, 35890, 55403, 66012, 101902, 121415, 187427, 223317, 344732, 410744, 634061, 755476, 1166220, 1389537, 2145013, 2555757, 3945294, 4700770, 7256527
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2019

Keywords

Comments

Orders of squares in the ternary tribonacci word A080843.
This is A213816 with duplicates removed.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,0,1,0,1},{0,1,2,3,4,6,7,11},100] (* Paolo Xausa, Nov 14 2023 *)
  • PARI
    concat(0, Vec(x^2*(1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6) / (1 - x^2 - x^4 - x^6) + O(x^50))) \\ Colin Barker, Jun 11 2019

Formula

From Colin Barker, Jun 11 2019: (Start)
G.f.: x^2*(1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6) / (1 - x^2 - x^4 - x^6).
a(n) = a(n-2) + a(n-4) + a(n-6) for n>8.
(End)

A337281 a(n) = n*T(n), where T(n) = A000073(n) = n-th tribonacci number.

Original entry on oeis.org

0, 0, 2, 3, 8, 20, 42, 91, 192, 396, 810, 1639, 3288, 6552, 12978, 25575, 50176, 98056, 190962, 370747, 717800, 1386252, 2671130, 5136291, 9857856, 18886900, 36127962, 69005439, 131621560, 250735856, 477077730, 906732175, 1721538560, 3265353168, 6187918434, 11716102195, 22164965064, 41900163524
Offset: 0

Views

Author

N. J. A. Sloane, Sep 12 2020

Keywords

References

  • Raphael Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Cf. A000073.

Programs

Formula

From Colin Barker, Sep 13 2020: (Start)
G.f.: x^2*(2 - x + x^3) / (1 - x - x^2 - x^3)^2.
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-4) - 2*a(n-5) - a(n-6) for n>5.
(End)

A341266 a(n) is the n-th term of the n-fold self-convolution of the twice left-shifted tribonacci sequence (A000073).

Original entry on oeis.org

1, 1, 5, 25, 125, 646, 3395, 18054, 96885, 523600, 2845700, 15537457, 85160387, 468279280, 2582140370, 14272523740, 79056303957, 438711518556, 2438587839980, 13574970187300, 75668677723100, 422294150816010, 2359326605275755, 13194525668986350, 73857744668632275
Offset: 0

Views

Author

Alois P. Heinz, Feb 07 2021

Keywords

Comments

The twice left-shifted tribonacci sequence begins: 1, 1, 2, 4, 7, 13, 24, ... .

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series((1/(1-x-x^2-x^3))^n, x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    g:= proc(n) g(n):= `if`(n<2, (n+1)*(2-n)/2, add(g(n-j), j=1..3)) end:
    b:= proc(n, k) option remember; `if`(k<2, g(n),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);

Formula

a(n) = [x^n] (1/(1-x-x^2-x^3))^n.

A354784 First differences of A000213, also twice A000073.

Original entry on oeis.org

0, 0, 2, 2, 4, 8, 14, 26, 48, 88, 162, 298, 548, 1008, 1854, 3410, 6272, 11536, 21218, 39026, 71780, 132024, 242830, 446634, 821488, 1510952, 2779074, 5111514, 9401540, 17292128, 31805182, 58498850, 107596160, 197900192, 363995202, 669491554
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2022

Keywords

Comments

Number of anti-palindromic compositions of n+1 of even length.

Crossrefs

Cf. A000213, A000073, A135491 (essentially the same sequence).

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 1}, {0, 0, 2}, 50] (* Paolo Xausa, May 27 2024 *)

Formula

From Chai Wah Wu, Jul 12 2022: (Start)
a(n) = a(n-1) + a(n-2) + a(n-3) for n > 2.
G.f.: -2*x^2/(x^3 + x^2 + x - 1). (End)

A356592 Array A(n, k), n, k >= 0, read by antidiagonals; A(n, k) = Sum_{i, j >= 3} t_i * u_j * T(i+j) where Sum_{i >= 3} t_i * T(i) and Sum_{j >= 3} u_j * T(j) are the greedy tribonacci representations of n and k, respectively, and T = A000073.

Original entry on oeis.org

0, 0, 0, 0, 7, 0, 0, 13, 13, 0, 0, 20, 24, 20, 0, 0, 24, 37, 37, 24, 0, 0, 31, 44, 57, 44, 31, 0, 0, 37, 57, 68, 68, 57, 37, 0, 0, 44, 68, 88, 81, 88, 68, 44, 0, 0, 51, 81, 105, 105, 105, 105, 81, 51, 0, 0, 57, 94, 125, 125, 136, 125, 125, 94, 57, 0
Offset: 0

Views

Author

Rémy Sigrist, Sep 11 2022

Keywords

Comments

This sequence is to tribonacci numbers (A000073) what A135090 is to Fibonacci numbers (A000045).

Examples

			Array A(n, k) begins:
  n\k | 0   1    2    3    4    5    6    7    8    9   10
  ----+---------------------------------------------------
    0 | 0   0    0    0    0    0    0    0    0    0    0
    1 | 0   7   13   20   24   31   37   44   51   57   64
    2 | 0  13   24   37   44   57   68   81   94  105  118
    3 | 0  20   37   57   68   88  105  125  145  162  182
    4 | 0  24   44   68   81  105  125  149  173  193  217
    5 | 0  31   57   88  105  136  162  193  224  250  281
    6 | 0  37   68  105  125  162  193  230  267  298  335
    7 | 0  44   81  125  149  193  230  274  318  355  399
    8 | 0  51   94  145  173  224  267  318  369  412  463
    9 | 0  57  105  162  193  250  298  355  412  460  517
   10 | 0  64  118  182  217  281  335  399  463  517  581
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A(n, 0) = A(0, k) = 0.
A(n, k) = A(k, n).
A(m, A(n, k)) = A(A(m, n), k) for m, n, k >= 5.
Previous Showing 51-60 of 401 results. Next