cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A155019 Integer part of square root of n^17 = A010805(n).

Original entry on oeis.org

0, 1, 362, 11363, 131072, 873464, 4114202, 15252229, 47453132, 129140163, 316227766, 710947978, 1489500287, 2941158941, 5521897022, 9926032708, 17179869184, 28761784747, 46753733110, 74029634996, 114486680447
Offset: 0

Views

Author

Keywords

Crossrefs

Integer part of square root of n^k: A000196 (k=1), A000093 (k=3), A155013 (k=5), A155014 (k=7), A155015 (k=11), A155016 (k=13), A155018 (k=15), this sequence (k=17).

Programs

  • Magma
    [Floor(Sqrt(n^17)): n in [0..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    a={};Do[AppendTo[a,IntegerPart[(n^17)^(1/2)]],{n,0,5!}];a
    Table[Floor[Sqrt[n^17]], {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=0,30, print1(floor(sqrt(n^17)), ", ")) \\ G. C. Greubel, Dec 30 2017
    

Extensions

Offset corrected by Alois P. Heinz, Sep 27 2014

A000148 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 2, 7, 15, 28, 45, 70, 100, 138, 183, 242, 310, 388, 481, 583, 701, 838, 984, 1152, 1337, 1535, 1757, 2001, 2262, 2545, 2855, 3183, 3540, 3926, 4335, 4770, 5233, 5728, 6248, 6801, 7388, 8005, 8658, 9345, 10064, 10824, 11620, 12452, 13324, 14236
Offset: 2

Views

Author

Keywords

Comments

a(n) is the number of solutions to the inequality x_1^(2/3) + x_2^(2/3) <= n where 1 <= x_1 <= x_2 are any two integers. If the number of terms in the sum is not restricted to 2, we get A000234. - R. J. Mathar, Jul 03 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    A000148[n_] := Sum[Min[xi, Floor[(n - xi^(2/3))^(3/2)]], {xi, 1, Floor[n^(3/2)]}];
    Table[A000148[n], {n, 2, 100}] (* Seth A. Troisi, May 25 2022 *)

Extensions

More terms from Sean A. Irvine, Oct 08 2009

A000336 a(n) = a(n-1)*a(n-2)*a(n-3)*a(n-4); for n < 5, a(n) = n.

Original entry on oeis.org

1, 2, 3, 4, 24, 576, 165888, 9172942848, 21035720123168587776, 18437563379178327736384102280592359424, 590180110002114158896983994712576414865667267958188575935810179040280576
Offset: 1

Views

Author

Keywords

Comments

The next term has 139 digits. - Harvey P. Dale, Jan 21 2019

Crossrefs

Programs

  • Maple
    A000336 := proc(n) option remember; if n <=4 then n else A000336(n-1)*A000336(n-2)*A000336(n-3)*A000336(n-4); fi; end;
  • Mathematica
    t = {1, 2, 3, 4}; Do[AppendTo[t, t[[-1]]*t[[-2]]*t[[-3]]*t[[-4]]], {n, 5, 15}] (* T. D. Noe, Jun 19 2012 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,a b c d}; NestList[nxt,{1,2,3,4},10][[All,1]] (* Harvey P. Dale, Jan 21 2019 *)
  • PARI
    a(n,a=[24,1,2,3,4])={for(n=6,n,a[n%5+1]=a[(n-1)%5+1]^2\a[n%5+1]);a[n%5+1]} \\ M. F. Hasler, Apr 22 2018
    
  • PARI
    first(n) = n = max(n, 5); my(res = vector(n)); for(i=1, 4, res[i] = i); res[5]=24; for(i = 6, n, res[i] = res[i-1]^2 / res[i - 5]); res \\ David A. Corneth, Apr 22 2018

Formula

a(n) = 2^A251656(n) * 3^A001631(n-1). - Vaclav Kotesovec, Feb 02 2016
a(n) = a(n-1)^2 / a(n-5), for n > 5. - M. F. Hasler, Apr 22 2018

A185549 a(n) = ceiling(n^(3/2)); complement of A185550.

Original entry on oeis.org

0, 1, 3, 6, 8, 12, 15, 19, 23, 27, 32, 37, 42, 47, 53, 59, 64, 71, 77, 83, 90, 97, 104, 111, 118, 125, 133, 141, 149, 157, 165, 173, 182, 190, 199, 208, 216, 226, 235, 244, 253, 263, 273, 282, 292, 302, 312, 323, 333, 343, 354, 365, 375, 386, 397, 408, 420, 431, 442, 454, 465, 477, 489
Offset: 0

Views

Author

Clark Kimberling, Jan 30 2011

Keywords

Crossrefs

Cf. A144968 (first differences).

Programs

  • Haskell
    a185549 = ceiling . (** (3 / 2)) . fromIntegral
    -- Reinhard Zumkeller, Jul 24 2015
    
  • Mathematica
    f[n_]=Ceiling[n^(3/2)];
    t1=Table[f[n],{n,1,90}];t1  (* A185549 *)
    t2=Complement[Range[150], Table[f[n],{n,1,80}]];t2  (* A185550 *)
    Ceiling[Sqrt[Range[0,70]^3]] (* Harvey P. Dale, Jul 04 2023 *)
  • PARI
    for(n=0,50, print1(ceil(n^(3/2)), ", ")) \\ G. C. Greubel, Jul 08 2017

Formula

a(n) = ceiling(n^(3/2)).
a(n) = sqrt(A077107(n)). - Amiram Eldar, May 17 2025

Extensions

Initial a(0)=0 prepended and offset adjusted by Reinhard Zumkeller, Jul 24 2015

A355159 Numbers k such that (fractional part of k^(3/2)) < 1/2.

Original entry on oeis.org

0, 1, 3, 4, 5, 9, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 42, 47, 49, 51, 56, 57, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 79, 81, 83, 87, 91, 92, 94, 97, 98, 99, 100, 101, 102, 103, 106, 108, 111, 112, 113, 114, 115
Offset: 0

Views

Author

Clark Kimberling, Jun 22 2022

Keywords

Comments

For each nonnegative integer K there is a greatest nonnegative integer h such that h/K <= sqrt(K); a(n) is the n-th number h such that h/K is closer to sqrt(K) than (h+1)/K is.

Crossrefs

Cf. A000093, A355160 (complement).

Programs

  • Mathematica
    Select[-1 + Range[300], N[FractionalPart[#^(3/2)]] < 1/2 &]  (* A355159 *)
    Select[-1 + Range[300], N[FractionalPart[#^(3/2)]] > 1/2 &]  (* A355160 *)
  • PARI
    isok(k) = frac(k^(3/2)) < 1/2; \\ Michel Marcus, Jul 11 2022
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A355159_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:int(((r:=n**3)-(m:=isqrt(r))*(m+1))<<2<=1),count(max(startvalue,0)))
    A355159_list = list(islice(A355159_gen(),30)) # Chai Wah Wu, Aug 03 2022

A000158 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 2, 8, 19, 41, 78, 134, 218, 339, 506, 730, 1023, 1397, 1884, 2477, 3218, 4118, 5192, 6486, 8010, 9795, 11888, 14302, 17066, 20256, 23889, 27999, 32637, 37863, 43695, 50218, 57495, 65545, 74431, 84257, 95030, 106840, 119799, 133941, 149311, 166071
Offset: 3

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality x_1^(2/3)+x_2^(2/3)+x_3^(2/3)<=n for any three integers 1<=x_1<=x_2<=x_3. - R. J. Mathar, Jul 03 2009

References

  • B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000148, A000160, A000234. - R. J. Mathar, Jul 03 2009

Extensions

More terms from Sean A. Irvine, Oct 11 2009

A000160 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 2, 8, 21, 48, 99, 186, 330, 556, 895, 1397, 2107, 3097, 4459, 6264, 8644, 11760, 15742, 20790, 27128, 34993, 44664, 56473, 70784, 87995, 108564, 132970, 161828, 195686, 235274, 281349, 334682, 396202, 466849, 547712, 639935, 744716, 863443
Offset: 4

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality x_1^(2/3)+x_2^(2/3)+x_3^(2/3)+x_4^(2/3)<=n for any four integers 1<=x_1<=x_2<=x_3<=x_4. - R. J. Mathar, Jul 03 2009

References

  • B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

More terms from Sean A. Irvine, Oct 11 2009

A355160 Numbers k such that (fractional part of k^(3/2)) > 1/2.

Original entry on oeis.org

2, 6, 7, 8, 10, 12, 13, 19, 24, 26, 31, 33, 39, 40, 41, 43, 44, 45, 46, 48, 50, 52, 53, 54, 55, 58, 60, 68, 70, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 89, 90, 93, 95, 96, 104, 105, 107, 109, 110, 117, 118, 120, 122, 124, 125, 132, 133, 135, 137
Offset: 1

Views

Author

Clark Kimberling, Jun 23 2022

Keywords

Comments

For each positive integer K there is a greatest integer h such that h/K < sqrt(K); a(n) is the n-th number h such that (h+1)/K is closer to sqrt(K) than h/K is.

Crossrefs

Cf. A000093, A355159 (complement).

Programs

  • Mathematica
    Select[Range[300], N[FractionalPart[#^(3/2)]] < 1/2 &]  (* A355159 *)
    Select[Range[300], N[FractionalPart[#^(3/2)]] > 1/2 &]  (* A355160 *)
  • PARI
    isok(k) = frac(k^(3/2)) > 1/2; \\ Michel Marcus, Jul 11 2022
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A355160_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:int(((r:=n**3)-(m:=isqrt(r))*(m+1))<<2>1),count(max(startvalue,0)))
    A355160_list = list(islice(A355160_gen(),30)) # Chai Wah Wu, Aug 03 2022

A000234 Partitions into non-integral powers (see Comments for precise definition).

Original entry on oeis.org

1, 3, 8, 18, 37, 72, 136, 251, 445, 770, 1312, 2202, 3632, 5908, 9501, 15111, 23781, 37083, 57293, 87813, 133530, 201574, 302265, 450317, 666743, 981488, 1437003, 2092976, 3033253, 4375104, 6282026, 8981046, 12786327, 18131492, 25612628
Offset: 1

Views

Author

Keywords

Comments

This sequence gives the number of solutions to the inequality Sum_{i=1,2,...} xi^(2/3) <= n with the constraint that 1 <= x1 <= x2 <= x3 <= ... is a list of at least 1 and no more than n integers. - R. J. Mathar, Oct 19 2007

Examples

			a(3)=8 counts 5 partitions with 1 term, explicitly { 1^(2/3), 2^(2/3), 3^(2/3), 4^(2/3), 5^(2/3) }, 2 partitions into sums of 2 terms { 1^(2/3) + 1^(2/3), 1^(2/3) + 2^(2/3) } and one partition into a sum of three terms { 1^(2/3) + 1^(2/3) + 1^(2/3) }.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    fs:=n->floor(simplify(n)): a:=proc(i, m, k) options remember: local s,l,j,m2: if(k=1) then RETURN(1) else s:=0: l:=fs(m^(3/2)): for j from 1 to min(l,i) do m2:=m-j^(2/3): if(fs(m2)>=1) then s:=s+a(j, m2, k-1) fi: s:=s+1 od: RETURN(s) fi: end: seq(a(fs(n^(3/2)), n, n),n=1..19); # Herman Jamke (hermanjamke(AT)fastmail.fm), May 03 2008
  • Mathematica
    fs[n_] := Floor[Simplify[n]]; a[i_, m_, k_] := a[i, m, k] = Module[{s, l, j, m2}, If[k == 1, Return[1], s = 0; l = fs[m^(3/2)]; For[j = 1, j <= Min[l, i], j++, m2 = m - j^(2/3); If[fs[m2] >= 1, s = s + a[j, m2, k-1] ]; s = s+1]; Return[s]]]; A000234 = Table[an = a[fs[n^(3/2)], n, n]; Print["a(", n, ") = ", an]; an, {n, 1, 19}] (* Jean-François Alcover, Feb 06 2016, after Herman Jamke *)

Extensions

More terms from R. J. Mathar, Oct 19 2007
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 03 2008
a(20)-a(35) from Jon E. Schoenfield, Jan 17 2009

A000327 Number of partitions into non-integral powers.

Original entry on oeis.org

1, 5, 12, 23, 39, 62, 91, 127, 171, 228, 294, 370, 461, 561, 677, 811, 955, 1121, 1303, 1499, 1719, 1960, 2218, 2499, 2806, 3131, 3485, 3868, 4274, 4706, 5166, 5658, 6175, 6725, 7309, 7923, 8572, 9256, 9972, 10728, 11521, 12349, 13218, 14126, 15072
Offset: 3

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality x_1^(2/3) + x_2^(2/3) <= n for any two distinct integers 1 <= x_1 < x_2. - R. J. Mathar, Jul 03 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A000327 := proc(n) local a,x1,x2 ; a := 0 ; for x1 from 1 to floor(n^(3/2)) do x2 := (n-x1^(2/3))^(3/2) ; if floor(x2) >= x1+1 then a := a+floor(x2-x1) ; fi; od: a ; end: seq(A000327(n),n=3..80) ; # R. J. Mathar, Sep 29 2009
  • Mathematica
    A000327[n_] := Module[{a, x1, x2 }, a = 0; For[x1 = 1, x1 <= Floor[ n^(3/2)], x1++, x2 = (n - x1^(2/3))^(3/2); If[Floor[x2] >= x1+1, a = a + Floor[x2 - x1]]]; a ]; Table[A000327[n], {n, 3, 80}] (* Jean-François Alcover, Feb 07 2016, after R. J. Mathar *)
    A000327[n_] := Sum[Min[x1 - 1, Floor[(n - x1^(2/3))^(3/2)]], {x1, 2, Floor[n^(3/2)]}];
    Table[A000327[n], {n, 3, 80}] (* Seth A. Troisi, May 25 2022 *)

Formula

a(n) = A000148(n) - floor((n/2)^(3/2)). - Seth A. Troisi, May 25 2022

Extensions

More terms from R. J. Mathar, Sep 29 2009
Previous Showing 11-20 of 43 results. Next