cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 60 results. Next

A342447 T(n,e) is the number of unlabeled posets of n>=0 points with e>=0 arcs in the Hasse diagram, irregular triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 8, 2, 1, 1, 4, 11, 29, 12, 5, 1, 1, 4, 12, 43, 105, 92, 45, 12, 3, 1, 1, 4, 12, 46, 156, 460, 582, 487, 204, 71, 14, 7, 1, 1, 4, 12, 47, 170, 670, 2097, 3822, 4514, 3271, 1579, 561, 186, 44, 16, 4, 1, 1, 4, 12, 47, 173, 731, 2954, 10513, 24584, 40182
Offset: 0

Views

Author

R. J. Mathar, Mar 12 2021

Keywords

Comments

Maximal e for a given n (i.e., the length of the n-th row minus 1) is A002620(n), see Mathematics StackExchange. - Andrey Zabolotskiy, Mar 12 2021

Examples

			The table starts
1 ;
1 ;
1 1 ;
1 1 3 ;
1 1 4  8  2 ;
1 1 4 11 29  12   5 ;
1 1 4 12 43 105  92   45   12    3 ;
1 1 4 12 46 156 460  582  487  204   71   14   7 ;
1 1 4 12 47 170 670 2097 3822 4514 3271 1579 561 186 44 16 4 ;
...
T(4,0) = 1: the 4-point poset with no relations, 4 isolated points in the Hasse diagram.
T(4,1) = 1: the 4-point poset with one relation, the Hasse diagram has one vertical line and 2 isolated points.
T(4,2) = 4: the 4 posets contributing to A022016(4) = 4, extended by additional isolated point when the number of points is less than 4.
T(4,3) = 8: the 8 posets contributing to A022017(3).
T(4,4) = 2: the "dagaz rune" poset {1<3, 2<3, 1<4, 2<4}
  o o
  |X|
  o o
and the "diamond" poset {1<2, 1<3, 2<4, 3<4}
    o
   / \
  o   o
   \ /
    o
		

Crossrefs

Cf. A000112 (row sums), A263864, A022016 (convergents down rows), A002620, A342472 (lower bound row length), A342590 (connected), A342589 (labeled), A376633 (self-dual).

Formula

T(n,0) = T(n,1) = 1.
T(n,e) = A022016(e) for n >= 2e.

Extensions

T(0,0) = 1 prepended and "conjecture" removed from A022016 formula. Andrey Zabolotskiy, Mar 12 2021

A263864 Triangle read by rows: T(n,k) (n>=1, k>=1) is the number of posets with n elements whose Hasse diagram has k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 10, 4, 1, 1, 44, 13, 4, 1, 1, 238, 60, 14, 4, 1, 1, 1650, 312, 63, 14, 4, 1, 1, 14512, 2075, 328, 64, 14, 4, 1, 1, 163341, 17316, 2159, 331, 64, 14, 4, 1, 1, 2360719, 186173, 17801, 2175, 332, 64, 14, 4, 1, 1, 43944974, 2594568, 189406, 17885, 2178, 332, 64, 14, 4, 1, 1, 1055019099, 47041877
Offset: 1

Views

Author

Christian Stump, Oct 28 2015

Keywords

Comments

Multiset transformation of A000608.

Examples

			Triangle begins:
   1;
   1,  1;
   3,  1,  1;
  10,  4,  1,  1;
  44, 13,  4,  1,  1;
  ...
		

Crossrefs

Cf. A000112 (row sums), A000608 (k=1).

Extensions

More terms from R. J. Mathar, Jul 12 2020

A263859 Triangle read by rows: T(n,k) (n>=1, k>=0) is the number of posets with n elements and rank k (or depth k+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 20, 31, 10, 1, 1, 55, 162, 84, 15, 1, 1, 163, 940, 734, 185, 21, 1, 1, 556, 6372, 7305, 2380, 356, 28, 1, 1, 2222, 52336, 86683, 35070, 6259, 623, 36, 1, 1, 10765, 534741, 1261371, 619489, 125597, 14258, 1016, 45, 1
Offset: 1

Views

Author

Christian Stump, Oct 28 2015

Keywords

Comments

Row sums give A000112, n >= 1.
The rank of a poset is the number of cover relations in a maximal chain.

Examples

			Triangle begins:
1,
1,1,
1,3,1,
1,8,6,1,
1,20,31,10,1,
1,55,162,84,15,1,
1,163,940,734,185,21,1,
1,556,6372,7305,2380,356,28,1,
1,2222,52336,86683,35070,6259,623,36,1,
1,10765,534741,1261371,619489,125597,14258,1016,45,1,
...
		

Crossrefs

Cf. A000112 (row sums), A342500 (connected).

Extensions

More terms from Brinkmann-McKay (2002) added by N. J. A. Sloane, Mar 18 2017

A022016 Number of partially ordered sets with no isolated points and with n "lines": pairs (a,b) where a < b and there is no c with a < c < b. The lines form the minimal basis for the partial ordering.

Original entry on oeis.org

1, 1, 4, 12, 47, 174, 749, 3291, 15675, 78104, 411042, 2261961, 13009112, 77860234
Offset: 0

Views

Author

Keywords

Comments

The points are unlabeled.

Examples

			See Sloane's link.
		

References

  • See A000112 for references and links about partially ordered sets.

Crossrefs

Extensions

a(6)-a(13) from Rico Zöllner and Konrad Handrich, Nov 19 2024

A022017 Number of connected partially ordered sets with n "lines": pairs (a,b) where a < b and there is no c with a < c < b. The lines form the minimal basis for the partial ordering.

Original entry on oeis.org

1, 3, 8, 29, 103, 442, 1953, 9502, 48533, 262634, 1485764, 8777397, 53869119
Offset: 1

Views

Author

Keywords

Comments

The points are unlabeled.

Examples

			See Sloane's link.
		

References

  • See A000112 for references and links about partially ordered sets.

Crossrefs

Cf. A000112, A000608, A022016. Column sums of A342590.

Extensions

a(6)-a(9) from A342590. - R. J. Mathar, Mar 21 2021
a(10)-a(13) from Rico Zöllner and Konrad Handrich, Nov 19 2024

A079146 Number of unlabeled semitransitive orders on n elements: (1+3)-free posets.

Original entry on oeis.org

1, 2, 5, 15, 49, 173, 639, 2469, 9997, 43109, 205092, 1153646, 8523086, 91156133, 1446766659, 32998508358, 1047766596136, 45632564217917, 2711308588849394, 219364550983697100, 24151476334929009951, 3618445112608409433287
Offset: 1

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002

Keywords

Crossrefs

Cf. A079145 (labeled semitransitive orders), A000112.

Programs

  • Mathematica
    nmax = 23; co = Coefficient; ex = Exponent;
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten[Table[Function[ {p}, p + j x^i] /@ b[n - i j, i - 1], {j, 0, n/i}]]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j] co[s, x, i] co[t, x, j], {j, 1, ex[t, x]}], {i, 1, ex[s, x]}]/Product[i^co[s, x, i]*co[s, x, i]!, {i, 1, ex[s, x]}]/Product[i^co[t, x, i] co[t, x, i]!, {i, 1, ex[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    A[d_] := Sum[A[n, d - n], {n, 0, d}];
    B[x_] = Sum[A[n] x^n, {n, 0, nmax}];
    S[, ] = 0; Do[S[c_, t_] = Series[1 + (c/(1 + c)) S[c, t]^2 + t S[c, t]^3, {c, 0, nmax}, {t, 0, nmax}] // Normal, {nmax}];
    T[x_] = 1 - S[x/(1 - x), 1 - 2x - 1/B[x]];
    Rest[CoefficientList[-T[x] + O[x]^nmax, x]] (* Jean-François Alcover, Aug 11 2018, after Alois P. Heinz *)

Formula

G.f.: S(x/(1-x), T(x)), where S(x, y) is the g.f. for A221494 and T(x) is the g.f. for A221492. [Mathieu Guay-Paquet, Jan 18 2013]

Extensions

More terms from Mathieu Guay-Paquet, Jan 18 2013

A079265 Number of antisymmetric transitive binary relations on n unlabeled points.

Original entry on oeis.org

1, 2, 7, 32, 192, 1490, 15067, 198296, 3398105, 75734592, 2191591226, 82178300654, 3984499220967, 249298391641352, 20089200308020179, 2081351202770089728
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2003

Keywords

Comments

Also, number of unconstrained mixed models with n factors.

References

  • A. Hess and H. Iyer, Enumeration of mixed linear models and SAS macro for computation of confidence intervals for variance components, presented at Applied Statistics in Agriculture Conference at Kansas State University 2001.

Crossrefs

Cf. A000112 (partial orders), A091073 (transitive relations), A001930 (quasi-orders), A085628 (labeled antisymmetric transitive relations).

Extensions

a(10)-a(12) and new description from Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(13)-a(15) from Brinkmann's and McKay's paper by Vladeta Jovovic, Jan 04 2006

A361912 The number of unlabeled graded posets with n elements.

Original entry on oeis.org

1, 1, 2, 4, 10, 28, 93, 354, 1621, 9110, 64801, 595976, 7204091, 115561423, 2473540433, 70853213144, 2720354016419, 140170631441858, 9702605436760235, 903309202327818566, 113234129823368903523, 19137461395401601912043, 4366007821745938984134203
Offset: 0

Views

Author

Martin Rubey, Mar 29 2023

Keywords

Comments

A partially ordered set is graded if all maximal chains have the same length. This is called tiered by some authors.

Crossrefs

Row sums of A361957.
Cf. A000112, A223911 (labeled), A001833, A361920, A361959 (connected).

Programs

  • PARI
    \\ See PARI link in A361957 for program code.
    A361912seq(20) \\ Andrew Howroyd, Apr 03 2023
  • Sage
    sum(1 for P in posets(n) if P.is_graded())
    

Extensions

Terms a(8) and beyond from Andrew Howroyd, Mar 30 2023

A361920 Number of unlabeled ranked posets with n elements.

Original entry on oeis.org

1, 1, 2, 5, 16, 61, 280, 1501, 9394, 68647, 591570, 6108298, 77162708, 1219779207, 24648006828, 647865966973, 22437052221282, 1032905858402302, 63591727342096158, 5258562027225785955, 586001891321599337103, 88241281449605821921186, 17996565026907866304071630
Offset: 0

Views

Author

Martin Rubey, Mar 29 2023

Keywords

Comments

A partially ordered set is ranked if there is a function from the poset elements to the integers such that the function value of a covering element is precisely one larger than the function value of the covered element. This is called graded by some authors.

Examples

			For n=5, A000112(n) - a(n) = 63 - 61 = 2 because we have 2 posets with 5 elements that are not ranked: a<b<c<d  a<e<d  and  a<c<e  a<d  b<d  b<e where < means "is covered by". - _Geoffrey Critzer_, Oct 29 2023
		

Crossrefs

Row sums of A361953.

Programs

  • PARI
    \\ See PARI link in A361953 for program code.
    A361920seq(20) \\ Andrew Howroyd, Apr 01 2023
  • Sage
    sum(1 for P in posets(n) if P.is_ranked())
    

Extensions

Terms a(8) and beyond from Andrew Howroyd, Mar 31 2023

A091073 Number of transitive relations on n unlabeled points.

Original entry on oeis.org

1, 2, 8, 39, 242, 1895, 19051, 246895, 4145108, 90325655, 2555630036, 93810648902, 4461086120602, 274339212258846, 21775814889230580, 2226876304576948549
Offset: 0

Views

Author

Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004

Keywords

Comments

a(13)-a(15) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jan 07 2006

Crossrefs

Cf. A079265 (antisymmetric transitive relations), A001930 (reflexive transitive relations), A000112 (partial orders), A006905 (labeled transitive relations).

Extensions

More terms from Vladeta Jovovic, Jan 07 2006
Previous Showing 11-20 of 60 results. Next