A089177
Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= 1+log_2(floor(n))) giving number of non-squashing partitions of n into k parts.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 4, 4, 1, 1, 5, 6, 2, 1, 6, 9, 4, 1, 7, 12, 6, 1, 8, 16, 10, 1, 1, 9, 20, 14, 2, 1, 10, 25, 20, 4, 1, 11, 30, 26, 6, 1, 12, 36, 35, 10, 1, 13, 42, 44, 14, 1, 14, 49, 56, 20, 1, 15, 56, 68, 26, 1, 16, 64, 84, 36, 1, 1, 17, 72, 100, 46, 2, 1, 18, 81, 120, 60, 4, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 2;
1, 4, 4, 1;
1, 5, 6, 2;
1, 6, 9, 4;
1, 7, 12, 6;
1, 8, 16, 10, 1;
-
T:= proc(n) option remember;
`if`(n=0, 1, zip((x, y)-> x+y, [T(n-1)], [0, T(floor(n/2))], 0)[])
end:
seq(T(n), n=0..25); # Alois P. Heinz, Apr 01 2012
-
row[0] = {1}; row[1] = {1, 1}; row[n_] := row[n] = Plus @@ PadRight[ {row[n-1], Join[{0}, row[Floor[n/2]]]} ]; Table[row[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Jan 31 2014 *)
A089292
G.f.: Product_{m>=1} 1/(1-x^m)^A018819(m).
Original entry on oeis.org
1, 1, 3, 5, 12, 20, 41, 69, 132, 222, 399, 665, 1156, 1904, 3212, 5234, 8645, 13925, 22596, 36008, 57590, 90862, 143508, 224316, 350505, 543159, 840623, 1292317, 1983094, 3026178, 4608061, 6983663, 10559800, 15901698, 23889722, 35760786, 53405395, 79498207
Offset: 0
a(4) = 12:
4.31.3.22.2.211.21.2..2.11.11.1
.....1....2.....1..11.1.11.1..1
......................1....1..1
..............................1
211 and 1111 for example are excluded because they would squash.
-
maxm = 38;
b[0] = b[1] = 1; b[n_] := b[n] = If[OddQ[n], b[n-1], b[n-1] + b[n/2]];
Product[1/(1-x^m)^b[m], {m, 1, maxm}] + O[x]^maxm // CoefficientList[#, x]&
(* Jean-François Alcover, Oct 02 2018 *)
A131205
a(n) = a(n-1) + a(floor(n/2)) + a(ceiling(n/2)).
Original entry on oeis.org
1, 3, 7, 13, 23, 37, 57, 83, 119, 165, 225, 299, 393, 507, 647, 813, 1015, 1253, 1537, 1867, 2257, 2707, 3231, 3829, 4521, 5307, 6207, 7221, 8375, 9669, 11129, 12755, 14583, 16613, 18881, 21387, 24177, 27251, 30655, 34389, 38513, 43027, 47991
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Cristina Ballantine, George Beck, and Mircea Merca, Partitions and elementary symmetric polynomials -- an experimental approach, arXiv:2408.13346 [math.CO], 2024. See p. 13.
- Cristina Ballantine, George Beck, Mircea Merca, and Bruce Sagan, Elementary symmetric partitions, arXiv:2409.11268 [math.CO], 2024. See pp. 5, 7.
-
a131205 n = a131205_list !! (n-1)
a131205_list = scanl1 (+) a000123_list -- Reinhard Zumkeller, Oct 10 2013
-
A[1]:= 1:
for n from 2 to 100 do A[n]:= A[n-1] + A[floor(n/2)] + A[ceil(n/2)] od:
seq(A[n],n=1..100); # Robert Israel, Sep 06 2016
-
Nest[Append[#1, #1[[-1]] + #1[[Floor@ #3]] + #[[Ceiling@ #3]] ] & @@ {#1, #2, #2/2} & @@ {#, Length@ # + 1} &, {1}, 42] (* Michael De Vlieger, Jan 16 2020 *)
A258485
Number of tangled chains of length k=7.
Original entry on oeis.org
1, 1, 365, 7119961, 1172597933594, 934741501255380321, 2602204282373953017437500, 20410544568790568555722851029455, 387481340785957748099474582410763014214, 15899856312608503503306403988460714538830399657
Offset: 1
- R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002.
A292477
Square array A(n,k), n >= 0, k >= 2, read by antidiagonals: A(n,k) = [x^(k*n)] Product_{j>=0} 1/(1 - x^(k^j)).
Original entry on oeis.org
1, 1, 2, 1, 2, 4, 1, 2, 3, 6, 1, 2, 3, 5, 10, 1, 2, 3, 4, 7, 14, 1, 2, 3, 4, 6, 9, 20, 1, 2, 3, 4, 5, 8, 12, 26, 1, 2, 3, 4, 5, 7, 10, 15, 36, 1, 2, 3, 4, 5, 6, 9, 12, 18, 46, 1, 2, 3, 4, 5, 6, 8, 11, 15, 23, 60, 1, 2, 3, 4, 5, 6, 7, 10, 13, 18, 28, 74, 1, 2, 3, 4, 5, 6, 7, 9, 12, 15, 21, 33, 94
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
4, 3, 3, 3, 3, 3, ...
6, 5, 4, 4, 4, 4, ...
10, 7, 6, 5, 5, 5, ...
14, 9, 8, 7, 6, 6, ...
Mirror of
A089688 (excluding the first row).
-
Table[Function[k, SeriesCoefficient[Product[1/(1 - x^k^i), {i, 0, n}], {x, 0, k n}]][j - n + 2], {j, 0, 12}, {n, 0, j}] // Flatten
A322156
Irregular triangle where row n includes all decreasing sequences S = {k_0 = n, k_1, k_2, ..., k_m} in reverse lexicographic order such that the sum of subsequent terms k_j for all i < j <= m does not exceed any k_i.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 3, 3, 1, 3, 1, 1, 3, 2, 3, 2, 1, 3, 3, 4, 4, 1, 4, 1, 1, 4, 2, 4, 2, 1, 4, 2, 1, 1, 4, 2, 2, 4, 3, 4, 3, 1, 4, 4, 5, 5, 1, 5, 1, 1, 5, 2, 5, 2, 1, 5, 2, 1, 1, 5, 2, 2, 5, 3, 5, 3, 1, 5, 3, 1, 1, 5, 3, 2, 5, 4, 5, 4, 1, 5, 5, 6, 6, 1, 6, 1, 1, 6, 2, 6, 2, 1, 6, 2, 1, 1, 6, 2, 2, 6
Offset: 1
Triangle begins:
1; 1,1;
2; 2,1; 2,1,1; 2,2;
3; 3,1; 3,1,1; 3,2; 3,2,1; 3,3;
4; 4,1; 4,1,1; 4,2; 4,2,1; 4,2,1,1; 4,2,2; 4,3; 4,3,1; 4,4;
...
Row n = 5 starts with S_1 = 5. We append 1 to get {5,1}. 1 does not exceed 5, thus S_2 = {5,1}. We append 1 to get {5,1,1}. A = {1,2}; {5,1}-{2,1} = {3,0}, thus S_3 = {5,1,1} and we drop the last term and increment the new last term to get {5,2}. S_4 = {5,2}, and the ensuing terms {5,2,1}, {5,2,1,1}, {5,2,2} enter into the row. Since there are repeated terms at the last sequence, we drop the last term and increment the new last to get {5,3}. The terms {5,3,1}, {5,3,1,1}, {5,3,2}, {5,3,2,1}, are admitted. {5,3,2,1,1} has A = {1,2,4,6}. {5,3,2,1}-{6,4,2,1} = {-1,1,0,0}: {5,3,2,1,1} cannot be admitted, so we drop the last term and increment to {5,3,2,2} but the sum of the last two terms exceeds the second and we drop the last term and increment to {5,3,3}. For similar reasons, this cannot be admitted, so we drop the last term and increment to {5,4}. This enters as well as {5,4,1}. Since any appendage or increment proves invalid, we end up incrementing to {5,5}. The two terms are the same, therefore we end the row n = 5.
-
(* Generate sequence: *)
f[n_] := Block[{w = {n}, c}, c[x_] := Apply[Times, Most@ x - Reverse@ Accumulate@ Reverse@ Rest@ x]; Reap[Do[Which[And[Length@ w == 2, SameQ @@ w], Sow[w]; Break[], Length@ w == 1, Sow[w]; AppendTo[w, 1], c[w] > 0, Sow[w]; AppendTo[w, 1], True, Sow[w]; w = MapAt[1 + # &, Drop[w, -1], -1]], {i, Infinity}] ][[-1, 1]] ]; Array[f, 6] // Flatten
(* Convert S = row n to standard partition: *)
g[w_] := Block[{k}, k = Total@ w; Total@ Map[Apply[Function[{s, t}, s Array[Boole[t <= # <= s + t - 1] &, k] ], #] &, Apply[Join, Prepend[Table[Function[{v, c}, Map[{w[[k]], # + 1} &, Map[Total[v #] &, Tuples[{0, 1}, {Length@ v}]]]] @@ {Most@ #, ConstantArray[1, Length@ # - 1]} &@ Take[w, k], {k, 2, Length@ w}], {{w[[1]], 1}}]]] ]
A088954
G.f.: 1/((1-x)^2*(1-x^2)*(1-x^4)*(1-x^8)*(1-x^16)).
Original entry on oeis.org
1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, 202, 238, 284, 330, 390, 450, 524, 598, 692, 786, 900, 1014, 1154, 1294, 1460, 1626, 1827, 2028, 2264, 2500, 2780, 3060, 3384, 3708, 4088, 4468, 4904, 5340, 5844, 6348, 6920, 7492, 8148, 8804, 9544
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
- N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -2, 2, -2, 0, 2, 0, -2, 0, 2, -2, 2, 0, -2, 2, -2, 0, 2, -2, 2, 0, -2, 0, 2, 0, -2, 2, -2, 0, 2, -1).
-
f := proc(n,k) option remember; if k > n then RETURN(0); fi; if k= 0 then if n=0 then RETURN(1) else RETURN(0); fi; fi; if k = 1 then RETURN(1); fi; if n mod 2 = 1 then RETURN(f(n-1,k)); fi; f(n-1,k)+f(n/2,k-1); end; # present sequence is f(2m,6)
GFF := k->x^(2^(k-2))/((1-x)*mul((1-x^(2^j)),j=0..k-2)); # present g.f. is GFF(6)/x^16
a:= proc(n) local m, r; m:= iquo(n, 16, 'r'); r:= r+1; [1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166][r] +(((((128/5*m +8*(15+r))*m +(228 +[0, 32, 68, 104, 144, 184, 228, 272, 320, 368, 420, 472, 528, 584, 644, 704][r]))*m +(172 +[0, 43, 98, 153, 223, 293, 378, 463, 566, 669, 790, 911, 1053, 1195, 1358, 1521][r]))*m +(247/5 +[0, 22, 55, 88, 138, 188, 255, 322, 415, 508, 627, 746, 900, 1054, 1243, 1432][r]))*m)/3 end: seq(a(n), n=0..60); # Alois P. Heinz, Apr 17 2009
-
CoefficientList[Series[1/((1-x)^2(1-x^2)(1-x^4)(1-x^8)(1-x^16)),{x,0,70}],x] (* or *) LinearRecurrence[{2,0,-2,2,-2,0,2,0,-2,0,2,-2,2,0,-2,2,-2,0,2,-2,2,0,-2,0,2,0,-2,2,-2,0,2,-1},{1,2,4,6,10,14,20,26,36,46,60,74,94,114,140,166,202,238,284,330,390,450,524,598,692,786,900,1014,1154,1294,1460,1626},70](* Harvey P. Dale, Feb 12 2013 *)
A100529
a(n) = minimal k such that n has a partition into k parts with the property that every number <= m can be partitioned into a subset of these parts.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 3, 4, 2, 2, 1, 1, 12, 15, 13, 14, 11, 12, 9, 10, 6, 6, 4, 4, 2, 2, 1, 1, 84, 91, 82, 89, 77, 80, 70, 73, 60, 63, 53, 54, 43, 44, 35, 36, 26, 26, 20, 20, 14, 14, 10, 10, 6, 6, 4, 4, 2, 2, 1, 1, 908
Offset: 1
A161800
G.f.: A(q) = exp( Sum_{n>=1} A002129(n) * 2*A006519(n) * q^n/n ).
Original entry on oeis.org
1, 2, 0, 0, -6, -16, 0, 0, -8, 18, 0, 0, 112, 176, 0, 0, -86, -544, 0, 0, -752, -160, 0, 0, 1360, 2834, 0, 0, 1216, -5104, 0, 0, -5384, 3232, 0, 0, 10762, 18032, 0, 0, -8176, -68992, 0, 0, -59888, 48400, 0, 0, 130160, 143074, 0, 0, 47696, -343088, 0, 0
Offset: 0
G.f.: A(q) = 1 + 2*q - 6*q^4 - 16*q^5 - 8*q^8 + 18*q^9 + 112*q^12 + 176*q^13 +...
log(A(q)) = 2*q - 4*q^2/2 + 8*q^3/3 - 40*q^4/4 + 12*q^5/5 - 16*q^6/6 +...
Sum_{n>=1} A002129(n)*q^n/n = log(1 + q + q^3 + q^6 + q^10 + q^15 +...),
Sum_{n>=1} 2*A006519(n)*x^n/n = log of the g.f. of binary partitions A000123.
QUADRASECTIONS:
Q_0(q) = 1 - 6*q - 8*q^2 + 112*q^3 - 86*q^4 - 752*q^5 + 1360*q^6 +...
Q_1(q) = 2 - 16*q + 18*q^2 + 176*q^3 - 544*q^4 - 160*q^5 + 2834*q^6 +...
The ratio Q_1(q)/Q_0(q) yields:
2 - 4*q + 10*q^2 - 20*q^3 + 36*q^4 - 64*q^5 + 110*q^6 - 180*q^7 +...
which appears to equal the g.f. of A127392.
-
{a(n)=local(L=sum(m=1, n,2*2^valuation(m,2)*sumdiv(m, d, -(-1)^d*d)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}
A162581
G.f.: A(x) = exp( 2*Sum_{n>=1} A006519(n)^2 * x^n/n ), where A006519(n) = highest power of 2 dividing n.
Original entry on oeis.org
1, 2, 6, 10, 26, 42, 86, 130, 258, 386, 694, 1002, 1754, 2506, 4134, 5762, 9346, 12930, 20198, 27466, 42330, 57194, 85750, 114306, 169602, 224898, 326934, 428970, 618138, 807306, 1144390, 1481474, 2084610, 2687746, 3732422, 4777098, 6591386
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 26*x^4 + 42*x^5 + 86*x^6 + ...
log(A(x))/2 = 2^0*x + 2^2*x^2 + 2^0*x^3/3 + 2^4*x^4/4 + 2^0*x^5/5 + 2^2*x^6/6 + 2^0*x^7/7 + 2^6*x^8/8 + ... + A006519(n)^2*x^n/n + ...
-
nmax = 200; a[n_]:= SeriesCoefficient[Series[Exp[ Sum[2^(2*IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q,0,nmax}], n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 04 2018 *)
-
{a(n)=local(L=sum(m=1,n,2*(2^valuation(m,2))^2*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}
Comments