cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002033 Number of perfect partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112
Offset: 0

Views

Author

Keywords

Comments

A perfect partition of n is one which contains just one partition of every number less than n when repeated parts are regarded as indistinguishable. Thus 1^n is a perfect partition for every n; and for n = 7, 4 1^3, 4 2 1, 2^3 1 and 1^7 are all perfect partitions. [Riordan]
Also number of ordered factorizations of n+1, see A074206.
Also number of gozinta chains from 1 to n (see A034776). - David W. Wilson
a(n) is the permanent of the n X n matrix with (i,j) entry = 1 if j|i+1 and = 0 otherwise. For n=3 the matrix is {{1, 1, 0}, {1, 0, 1}, {1, 1, 0}} with permanent = 2. - David Callan, Oct 19 2005
Appears to be the number of permutations that contribute to the determinant that gives the Moebius function. Verified up to a(9). - Mats Granvik, Sep 13 2008
Dirichlet inverse of A153881 (assuming offset 1). - Mats Granvik, Jan 03 2009
Equals row sums of triangle A176917. - Gary W. Adamson, Apr 28 2010
A partition is perfect iff it is complete (A126796) and knapsack (A108917). - Gus Wiseman, Jun 22 2016
a(n) is also the number of series-reduced planted achiral trees with n + 1 unlabeled leaves, where a rooted tree is series-reduced if all terminal subtrees have at least two branches, and achiral if all branches directly under any given node are equal. Also Moebius transform of A067824. - Gus Wiseman, Jul 13 2018

Examples

			n=0: 1 (the empty partition)
n=1: 1 (1)
n=2: 1 (11)
n=3: 2 (21, 111)
n=4: 1 (1111)
n=5: 3 (311, 221, 11111)
n=6: 1 (111111)
n=7: 4 (4111, 421, 2221, 1111111)
From _Gus Wiseman_, Jul 13 2018: (Start)
The a(11) = 8 series-reduced planted achiral trees with 12 unlabeled leaves:
  (oooooooooooo)
  ((oooooo)(oooooo))
  ((oooo)(oooo)(oooo))
  ((ooo)(ooo)(ooo)(ooo))
  ((oo)(oo)(oo)(oo)(oo)(oo))
  (((ooo)(ooo))((ooo)(ooo)))
  (((oo)(oo)(oo))((oo)(oo)(oo)))
  (((oo)(oo))((oo)(oo))((oo)(oo)))
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126, see #27.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 141.
  • D. E. Knuth, The Art of Computer Programming, Pre-Fasc. 3b, Sect. 7.2.1.5, no. 67, p. 25.
  • P. A. MacMahon, The theory of perfect partitions and the compositions of multipartite numbers, Messenger Math., 20 (1891), 103-119.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 123-124.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as A074206, up to the offset and initial term there.
Cf. A176917.
For parity see A008966.

Programs

  • Maple
    a := array(1..150): for k from 1 to 150 do a[k] := 0 od: a[1] := 1: for j from 2 to 150 do for m from 1 to j-1 do if j mod m = 0 then a[j] := a[j]+a[m] fi: od: od: for k from 1 to 150 do printf(`%d,`,a[k]) od: # James Sellers, Dec 07 2000
    # alternative
    A002033 := proc(n)
        option remember;
        local a;
        if n <= 2 then
            return 1;
        else
            a := 0 ;
            for i from 0 to n-1 do
                if modp(n+1,i+1) = 0 then
                    a := a+procname(i);
                end if;
            end do:
        end if;
        a ;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = a /@ Most[Divisors[n]] // Total; a /@ Range[96]  (* Jean-François Alcover, Apr 06 2011, updated Sep 23 2014. NOTE: This produces A074206(n) = a(n-1). - M. F. Hasler, Oct 12 2018 *)
  • PARI
    A002033(n) = if(n,sumdiv(n+1,i,if(i<=n,A002033(i-1))),1) \\ Michael B. Porter, Nov 01 2009, corrected by M. F. Hasler, Oct 12 2018
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A002033(n):
        if n <= 1:
            return 1
        return sum(A002033(i-1) for i in divisors(n+1,generator=True) if i <= n) # Chai Wah Wu, Jan 12 2022

Formula

From David Wasserman, Nov 14 2006: (Start)
a(n-1) = Sum_{i|d, i < n} a(i-1).
a(p^k-1) = 2^(k-1).
a(n-1) = A067824(n)/2 for n > 1.
a(A122408(n)-1) = A122408(n)/2. (End)
a(A025487(n)-1) = A050324(n). - R. J. Mathar, May 26 2017
a(n) = (A253249(n+1)+1)/4, n > 0. - Geoffrey Critzer, Aug 19 2020

Extensions

Edited by M. F. Hasler, Oct 12 2018

A000123 Number of binary partitions: number of partitions of 2n into powers of 2.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, 202, 238, 284, 330, 390, 450, 524, 598, 692, 786, 900, 1014, 1154, 1294, 1460, 1626, 1828, 2030, 2268, 2506, 2790, 3074, 3404, 3734, 4124, 4514, 4964, 5414, 5938, 6462, 7060, 7658, 8350, 9042, 9828
Offset: 0

Views

Author

Keywords

Comments

Also, a(n) = number of "non-squashing" partitions of 2n (or 2n+1), that is, partitions 2n = p_1 + p_2 + ... + p_k with 1 <= p_1 <= p_2 <= ... <= p_k and p_1 + p_2 + ... + p_i <= p_{i+1} for all 1 <= i < k [Hirschhorn and Sellers].
Row sums of A101566. - Paul Barry, Jan 03 2005
Equals infinite convolution product of [1,2,2,2,2,2,2,2,2] aerated A000079 - 1 times, i.e., [1,2,2,2,2,2,2,2,2] * [1,0,2,0,2,0,2,0,2] * [1,0,0,0,2,0,0,0,2]. - Mats Granvik and Gary W. Adamson, Aug 04 2009
Which can be further decomposed to the infinite convolution product of finally supported sequences, namely [1,1] aerated A000079 - 1 times with multiplicity A000027 + 1 times, i.e., [1,1] * [1,1] * [1,0,1] * [1,0,1] * [1,0,1] * ... (next terms are [1,0,0,0,1] 4 times, etc.). - Eitan Y. Levine, Jun 18 2023
Given A018819 = A000123 with repeats, polcoeff (1, 1, 2, 2, 4, 4, ...) * (1, 1, 1, ...) = (1, 2, 4, 6, 10, ...) = (1, 0, 2, 0, 4, 0, 6, ...) * (1, 2, 2, 2, ...). - Gary W. Adamson, Dec 16 2009
Let M = an infinite lower triangular matrix with (1, 2, 2, 2, ...) in every column shifted down twice. A000123 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. Replacing (1, 2, 2, 2, ...) with (1, 3, 3, 3, ...) and following the same procedure, we obtain A171370: (1, 3, 6, 12, 18, 30, 42, 66, 84, 120, ...). - Gary W. Adamson, Dec 06 2009
First differences of the sequence are (1, 2, 2, 4, 4, 6, 6, 10, ...), A018819, i.e., the sequence itself with each term duplicated except for the first one (unless a 0 is prefixed before taking the first differences), as shown by the formula a(n) - a(n-1) = a(floor(n/2)), valid for all n including n = 0 if we let a(-1) = 0. - M. F. Hasler, Feb 19 2019
Sum over k <= n of number of partitions of k into powers of 2, A018819. - Peter Munn, Feb 21 2020

Examples

			For non-squashing partitions and binary partitions see the example in A018819.
For n=3, the a(3)=6 admitted partitions of 2n=6 are 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+4 and 2+4. - _R. J. Mathar_, Aug 11 2021
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
  • R. F. Churchhouse, Binary partitions, pp. 397-400 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. G. de Bruijn, On Mahler's partition problem, Indagationes Mathematicae, vol. X (1948), 210-220.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • H. Gupta, A simple proof of the Churchhouse conjecture concerning binary partitions, Indian J. Pure Appl. Math. 3 (1972), 791-794.
  • H. Gupta, A direct proof of the Churchhouse conjecture concerning binary partitions, Indian J. Math. 18 (1976), 1-5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A002033, A002487, A002577, A005704-A005706, A023359, A040039, A100529. Partial sums and bisection of A018819.
A column of A072170. Row sums of A089177. Twice A033485.
Cf. A145515. - Alois P. Heinz, Apr 16 2009
Cf. A171370. - Gary W. Adamson, Dec 06 2009

Programs

  • Haskell
    import Data.List (transpose)
    a000123 n = a000123_list !! n
    a000123_list = 1 : zipWith (+)
       a000123_list (tail $ concat $ transpose [a000123_list, a000123_list])
    -- Reinhard Zumkeller, Nov 15 2012, Aug 01 2011
    
  • Magma
    [1] cat [n eq 1 select n+1 else Self(n-1) + Self(n div 2): n in [1..70]]; // Vincenzo Librandi, Dec 17 2016
    
  • Maple
    A000123 := proc(n) option remember; if n=0 then 1 else A000123(n-1)+A000123(floor(n/2)); fi; end; [ seq(A000123(i),i=0..50) ];
    # second Maple program: more efficient for large n; try: a( 10^25 );
    g:= proc(b, n) option remember; `if`(b<0, 0, `if`(b=0 or
          n=0, 1, `if`(b>=n, add((-1)^(t+1)*binomial(n+1, t)
          *g(b-t, n), t=1..n+1), g(b-1, n)+g(2*b, n-1))))
        end:
    a:= n-> (t-> g(n/2^(t-1), t))(max(ilog2(2*n), 1)):
    seq(a(n), n=0..60); # Alois P. Heinz, Apr 16 2009, revised Apr 14 2016
  • Mathematica
    a[0] = 1; a[n_] := a[n] = a[Floor[n/2]] + a[n-1]; Array[a,49,0] (* Jean-François Alcover, Apr 11 2011, after M. F. Hasler *)
    Fold[Append[#1, Total[Take[Flatten[Transpose[{#1, #1}]], #2]]] &, {1}, Range[2, 49]] (* Birkas Gyorgy, Apr 18 2011 *)
  • PARI
    {a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while(m<=n, m*=2; A = subst(A, x, x^2) * (1+x) / (1-x)); polcoeff(A, n))}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, a(n\2) + a(n-1))}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    A123=[];A000123(n)={ n<3 && return(2^n); if( n<=#A123, A123[n] && return(A123[n]); A123[n-1] && return( A123[n] = A123[n-1]+A000123(n\2) ), n>2*#A123 && A123=concat(A123,vector((n-#A123)\2))); A123[if(n>#A123,1,n)]=2*sum(k=1,n\2-1,A000123(k),1)+(n%2+1)*A000123(n\2)} \\ Stores results in global vector A123 dynamically resized to at most 3n/4 when size is less than n/2. Gives a(n*10^6) in ~ n sec. - M. F. Hasler, Apr 30 2009
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,2^valuation(2*m,2)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Oct 30 2012
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A000123(n): return 1 if n == 0 else A000123(n-1) + A000123(n//2) # Chai Wah Wu, Jan 18 2022

Formula

a(n) = A018819(2*n).
a(n) = a(n-1) + a(floor(n/2)). For proof see A018819.
2 * a(n) = a(n+1) + a(n-1) if n is even. - Michael Somos, Jan 07 2011
G.f.: (1-x)^(-1) Product_{n>=0} (1 - x^(2^n))^(-1).
a(n) = Sum_{i=0..n} a(floor(i/2)) [O'Shea].
a(n) = (1/n)*Sum_{k=1..n} (A038712(k)+1)*a(n-k), n > 1, a(0)=1. - Vladeta Jovovic, Aug 22 2002
Conjecture: Limit_{n ->infinity} (log(n)*a(2n))/(n*a(n)) = c = 1.63... - Benoit Cloitre, Jan 26 2003 [The constant c is equal to 2*log(2) = 1.38629436... =A016627. - Vaclav Kotesovec, Aug 07 2019]
G.f. A(x) satisfies A(x^2) = ((1-x)/(1+x)) * A(x). - Michael Somos, Aug 25 2003
G.f.: Product_{k>=0} (1+x^(2^k))/(1-x^(2^k)) = (Product_{k>=0} (1+x^(2^k))^(k+1) )/(1-x) = Product_{k>=0} (1+x^(2^k))^(k+2). - Joerg Arndt, Apr 24 2005
From Philippe Flajolet, Sep 06 2008: (Start)
The asymptotic rate of growth is known precisely - see De Bruijn's paper. With p(n) the number of partitions of n into powers of two, the asymptotic formula of de Bruijn is: log(p(2*n)) = 1/(2*L2)*(log(n/log(n)))^2 + (1/2 + 1/L2 + LL2/L2)*log(n) - (1 + LL2/L2)*log(log(n)) + Phi(log(n/log(n))/L2), where L2=log(2), LL2=log(log(2)) and Phi(x) is a certain periodic function with period 1 and a tiny amplitude.
Numerically, Phi(x) appears to have a mean value around 0.66. An expansion up to O(1) term had been obtained earlier by Kurt Mahler. (End)
G.f.: exp( Sum_{n>=1} 2^A001511(n) * x^n/n ), where 2^A001511(n) is the highest power of 2 that divides 2*n. - Paul D. Hanna, Oct 30 2012
(n/2)*a(n) = Sum_{k = 0..n-1} (n-k)/A000265(n-k)*a(k). - Peter Bala, Mar 03 2019
Conjectures from Mikhail Kurkov, May 04 2025: (Start)
Sum_{k=0..n} a(2^m*k)*A106400(n-k) = A125790(m,2*n) for m >= 0, n >= 0.
Sum_{k=0..n} a(2^m*(2*k+1))*A106400(n-k) = A125790(m+1,2*n+1) for m >= 0, n >= 0.
More generally, if we define b(n,m,p,q) = Sum_{k=0..n} a(2^m*(2*p*k+2*q+1))*A106400(n-k) for m >= 0, p > 0, q >= 0, n >= 0, then it also looks like that we have b(n,m,p,q) = Sum_{k=0..m+1} A078121(m+1,k)*b(n,k,p/2,(q-1)/2), b(n,m,p,q) = Sum_{k=0..m+1} A078121(m+1,k)*b(n,k,p/2,q/2)*(-1)^(m+k+1) for m >= 0, p > 0, q >= 0, n >= 0. (End)
Conjecture: Sum_{i>=0} a(2^m*i + k)*x^i = f(k,x) / Product_{q>=0} (1 - x^(2^q)) for m > 0, 2^(m-1) <= k < 2^m where f(k,x) is g.f. for k-th row of A381810. - Mikhail Kurkov, May 17 2025

Extensions

More terms from Robin Trew (trew(AT)hcs.harvard.edu)
Values up to a(10^4) checked with given PARI code by M. F. Hasler, Apr 30 2009

A117115 A sequence related to M-partitions.

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 14, 21, 24, 34, 37, 51, 58, 75, 82, 110, 117, 148, 161, 202, 215, 265, 278, 342, 365, 436, 459, 557, 580, 685, 722, 855, 892, 1046, 1083, 1268, 1325, 1523, 1580, 1839, 1896, 2168, 2251, 2573, 2656, 3017, 3100, 3525, 3644, 4092, 4211, 4766, 4885
Offset: 0

Views

Author

N. J. A. Sloane, Apr 26 2006

Keywords

Crossrefs

Programs

  • Maple
    # To get about 80 terms: B:=mul( (1-x^(2^n))^(-1),n=0..7); D2:=add( x^(2^(j-1)-1)*subs(x=x^(3*2^(j-1)),B)*mul(1/(1-x^(2^i)),i=0..j), j=1..8); series(D2,x,81);

A117117 A sequence related to M-partitions.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 13, 15, 21, 29, 37, 45, 62, 70, 89, 108, 132, 151, 191, 210, 256, 296, 350, 390, 476, 516, 610, 684, 795, 869, 1025, 1099, 1274, 1399, 1593, 1718, 1994, 2119, 2414, 2614, 2949, 3149, 3585, 3785, 4267, 4577, 5099, 5409, 6102, 6412, 7145, 7603, 8422
Offset: 0

Views

Author

N. J. A. Sloane, Apr 26 2006

Keywords

Crossrefs

Programs

  • Maple
    # To get about 80 terms, first define B and D2 as in A117115. E2:=add( x^(2^(j+1)-4)*subs(x=x^(3*2^(j-1)),D2)*mul(1/(1-x^(2^i)),i=0..j), j=1..8); series(E2,x,81);
Showing 1-4 of 4 results.