cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 153 results. Next

A295657 Multiplicative with a(p^e) = p^floor((e-1)/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> p^Floor[(e - 1)/2]] &, 105] (* Michael De Vlieger, Nov 28 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^floor((f[i,2]-1)/2));} \\ Amiram Eldar, Nov 30 2022

Formula

a(1) = 1; for n > 1, a(n) = A020639(n)^A004526(A067029(n)-1) * a(A028234(n)).
a(n) = A000188(A003557(n)).
a(n) = 1 iff A212793(n) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 15/Pi^2 = 1.519817... (A082020). - Amiram Eldar, Nov 30 2022

A334215 T(n, k) is the greatest positive integer m such that m^k divides n; square array T(n, k), n, k > 0 read by antidiagonals downwards.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 9, 1, 1, 1, 1, 1, 1, 1, 2, 3, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Rémy Sigrist, Apr 19 2020

Keywords

Examples

			Square array starts:
  n\k|   1  2  3  4  5  6  7  8  9 10
  ---+-------------------------------
    1|   1  1  1  1  1  1  1  1  1  1
    2|   2  1  1  1  1  1  1  1  1  1
    3|   3  1  1  1  1  1  1  1  1  1
    4|   4  2  1  1  1  1  1  1  1  1
    5|   5  1  1  1  1  1  1  1  1  1
    6|   6  1  1  1  1  1  1  1  1  1
    7|   7  1  1  1  1  1  1  1  1  1
    8|   8  2  2  1  1  1  1  1  1  1
    9|   9  3  1  1  1  1  1  1  1  1
   10|  10  1  1  1  1  1  1  1  1  1
   11|  11  1  1  1  1  1  1  1  1  1
   12|  12  2  1  1  1  1  1  1  1  1
   13|  13  1  1  1  1  1  1  1  1  1
   14|  14  1  1  1  1  1  1  1  1  1
   15|  15  1  1  1  1  1  1  1  1  1
   16|  16  4  2  2  1  1  1  1  1  1
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (f=factor(n)); prod (i=1, #f~, f[i,1]^(f[i,2]\k)) }

Formula

T(n, 1) = n.
T(n, 2) = A000188(n).
T(n, 3) = A053150(n).
T(n, 4) = A053164(n).
T(n, A051903(n)) = A261969(n).
T(n, k) = 1 for any k > A051903(n).
T(n^k, k) = n.

A375970 a(n) is the largest number k such that k^2 divides the square pyramidal number A000330(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 5, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 70, 5, 3, 3, 1, 1, 1, 4, 4, 1, 1, 1, 1, 5, 1, 2, 6, 1, 1, 1, 1, 1, 1, 2, 14, 35, 5, 1, 1, 3, 3, 2, 2, 1, 1, 1, 11, 1, 5, 4, 4, 1, 1, 3, 1, 1, 1, 2, 2, 7, 5, 5, 1, 1, 1, 2, 6, 3, 1, 1, 13, 1, 1, 10, 2, 1, 1, 1, 1, 1, 3, 4, 4, 7
Offset: 1

Views

Author

Robert Israel, Sep 04 2024

Keywords

Comments

a(n)^2 is the largest square that divides n*(n+1)*(2*n+1)/6.

Examples

			a(12) = 5 because A000330(12) = 650 = 2 * 5^2 = 13 and 5^2 is the largest square dividing 650.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) local t,s,F; t:= n*(n+1)*(2*n+1)/6;
      F:= ifactors(t)[2];
      mul(s[1]^floor(s[2]/2), s=F)
    end proc:
    map(g, [$1..100]);
  • PARI
    a(n) = my(m=n*(n+1)*(2*n+1)/6); sqrtint(m/core(m)); \\ Michel Marcus, Sep 06 2024

Formula

a(n) = A000188(A000330(n)).

A055491 Smallest square divisible by n divided by largest square which divides n.

Original entry on oeis.org

1, 4, 9, 1, 25, 36, 49, 4, 1, 100, 121, 9, 169, 196, 225, 1, 289, 4, 361, 25, 441, 484, 529, 36, 1, 676, 9, 49, 841, 900, 961, 4, 1089, 1156, 1225, 1, 1369, 1444, 1521, 100, 1681, 1764, 1849, 121, 25, 2116, 2209, 9, 1, 4, 2601, 169, 2809, 36, 3025, 196, 3249, 3364
Offset: 1

Views

Author

Henry Bottomley, Jun 28 2000

Keywords

Examples

			a(12) = 36/4 = 9.
		

Crossrefs

Programs

  • Haskell
    a055491 = (^ 2) . a007913  -- Reinhard Zumkeller, Jul 23 2014
    
  • Mathematica
    With[{sqs=Range[100]^2},Table[SelectFirst[sqs,Divisible[#,n]&]/ SelectFirst[ Reverse[sqs],Divisible[n,#]&],{n,60}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 18 2018 *)
    f[p_, e_] := p^(2 * Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(2*(f[i,2]%2)));} \\ Amiram Eldar, Oct 27 2022

Formula

If n is written as Product(Pj^Ej) then a(n) = Product(Pj^(2*(Ej mod 2))).
a(n) = A053143(n)/A008833(n) = A007913(n)^2 = (A019554(n)/A000188(n))^2 = A000290(n)/A008833(n)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(6)/(3*zeta(2))) = 2*Pi^4/945 = 0.206156... . - Amiram Eldar, Oct 27 2022
Dirichlet g.f.: zeta(s-2) * zeta(2*s) / zeta(2*s-4). - Amiram Eldar, Sep 16 2023

A056043 Let k be largest number such that k^2 divides n!; a(n) = k/floor(n/2)!.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 3, 6, 6, 2, 2, 2, 6, 3, 3, 2, 2, 2, 2, 2, 2, 2, 10, 10, 30, 30, 30, 12, 12, 3, 3, 6, 30, 10, 10, 10, 30, 6, 6, 2, 2, 2, 30, 60, 60, 30, 210, 42, 42, 42, 42, 28, 28, 2, 2, 4, 4, 4, 4, 4, 84, 21, 21, 14, 14, 14, 42, 6, 6, 2, 2, 2, 10, 10, 70, 140, 140, 14, 126, 126
Offset: 1

Views

Author

Labos Elemer, Jul 25 2000

Keywords

Examples

			For n = 7, 7! = 5040 = 144*35, so 12 is its largest square-root-divisor, A000188(5040), and it is divisible by 6 = 3!, so a(7) = 12/3! = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; b[1] = 1; a[n_] := (Times @@ f @@@ FactorInteger[n!]) / Floor[n/2]!; Array[a, 100] (* Amiram Eldar, May 24 2024 *)

Formula

a(n) = A000188(n!)/floor(n/2)! = A055772(n)/A000142(A004526(n)) = A055772(n)/A081123(n). [Corrected by Amiram Eldar, May 24 2024]

A056194 Characteristic cube divisor of n!: a(n) = A056191(n!).

Original entry on oeis.org

1, 1, 1, 8, 8, 1, 1, 8, 8, 1, 1, 27, 27, 216, 1000, 1000, 1000, 125, 125, 1, 9261, 74088, 74088, 343, 343, 2744, 74088, 216, 216, 125, 125, 1000, 35937000, 4492125, 12326391, 12326391, 12326391, 98611128, 8024024008, 125375375125
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 06 2020 *)

Formula

a(n) = A056191(A000142(n)). - Amiram Eldar, Sep 06 2020

A056195 a(n) = n! divided by its characteristic cube divisor A056194.

Original entry on oeis.org

1, 2, 6, 3, 15, 720, 5040, 5040, 45360, 3628800, 39916800, 17740800, 230630400, 403603200, 1307674368, 20922789888, 355687428096, 51218989645824, 973160803270656, 2432902008176640000, 5516784599040000
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Examples

			n = 10, a(10) = 10! because g(10!) = 1.
n = 9, a(9) = 45320 because 9! = 2*2*2*2*2*2*2*3*3*5*7 and g(9!) = 2, so a(9) = 9!/8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := n! / (Times @@ f @@@ FactorInteger[n!]); Array[a, 20] (* Amiram Eldar, Sep 06 2020 *)

Formula

The CCD of n! is the cube of g = A055229(n!) = A055230(n). So a(n) = n!/ggg = L*L*f where L = A000188(n!)/A055229(n!) = A055772(n)/A055230(n) and f = A055231(n!) = A055773(n).

A064368 Number of 2 X 2 symmetric singular matrices with entries from {0,...,n}.

Original entry on oeis.org

1, 4, 7, 10, 15, 18, 21, 24, 29, 36, 39, 42, 47, 50, 53, 56, 65, 68, 75, 78, 83, 86, 89, 92, 97, 108, 111, 118, 123, 126, 129, 132, 141, 144, 147, 150, 163, 166, 169, 172, 177, 180, 183, 186, 191, 198, 201, 204, 213, 228, 239, 242, 247, 250, 257, 260, 265, 268
Offset: 0

Views

Author

Vladeta Jovovic, Sep 27 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; a[0] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; With[{max = 100}, 1 + Range[0, max] + 2 * Accumulate[Array[a, max + 1, 0]]] (* Amiram Eldar, Nov 07 2024 *)
  • PARI
    a(n) = n + 1 + 2*sum(k=1, n, sumdiv(k, d, issquare(d)*eulerphi(sqrtint(d)))) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = n + 1 + 2*Sum_{k=1..n} Sum_{d^2|k} phi(d), where phi = Euler totient function A000010.
a(n) ~ (n/zeta(2)) * (log(n) + 3*gamma - 1 + zeta(2) - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 07 2024

A087050 Square root of the largest square >1 dividing the n-th nonsquarefree number.

Original entry on oeis.org

2, 2, 3, 2, 4, 3, 2, 2, 5, 3, 2, 4, 6, 2, 2, 3, 4, 7, 5, 2, 3, 2, 2, 3, 8, 2, 6, 5, 2, 4, 9, 2, 2, 3, 2, 4, 7, 3, 10, 2, 6, 4, 2, 3, 2, 11, 2, 5, 3, 8, 2, 3, 2, 2, 12, 7, 2, 5, 2, 3, 2, 4, 9, 2, 2, 13, 3, 2, 5, 4, 6, 2, 2, 3, 8, 14, 3, 10, 2, 3, 4, 2, 6, 2, 4, 15, 2, 2, 3, 2, 4, 11, 9, 2, 7, 2, 5, 6, 16, 2, 3
Offset: 1

Views

Author

Wolfdieter Lang, Sep 08 2003

Keywords

Examples

			n=10, A013929(10) = 27, a(10)^2 = 3^2 = 9. 27 = 9*3.
n=39, A013929(39) = 100, a(39)^2 = 10^2 = 100.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[300], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 11 2021 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, factorint
    def A087050(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod(p**(e>>1) for p, e in factorint(m).items() if e>1) # Chai Wah Wu, Jul 22 2024

Formula

a(n)^2 is the largest square factor (from A000290) of the nonsquarefree number A013929(n), n>=1.
a(n) = A000188(A013929(n)). - Amiram Eldar, Feb 11 2021
Sum_{k=1..n} a(k) ~ (n/(2*(zeta(2)-1))) * (log(n) + 3*gamma - 3 - 2*zeta'(2)/zeta(2) - log(1-1/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 14 2024

A087726 Number of elements X in the matrix ring M_2(Z_n) such that X^2 == 0 mod n.

Original entry on oeis.org

1, 4, 9, 28, 25, 36, 49, 112, 153, 100, 121, 252, 169, 196, 225, 640, 289, 612, 361, 700, 441, 484, 529, 1008, 1225, 676, 1377, 1372, 841, 900, 961, 2560, 1089, 1156, 1225, 4284, 1369, 1444, 1521, 2800, 1681, 1764, 1849, 3388, 3825, 2116, 2209, 5760, 4753, 4900, 2601, 4732
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 28 2003

Keywords

Comments

Conjecture: a(n)=n^2 if and only if n is squarefree. [Ben Branman, Mar 22 2013]
Preceding conjecture is true in the case where n is squarefree. - Eric M. Schmidt, Mar 23 2013
It appears that a(p^k) = (1+3*p^2 + 2*k*(p^2-1) + (-1)^k*(p^2-1))*p^(2*k-2)/4 for primes p. Since the sequence is multiplicative, this would imply the conjecture. - Robert Israel, Jun 10 2015
A proof of the formula for k=1 can be done easily (see pdf). - Manfred Scheucher, Jun 10 2015

Crossrefs

Programs

  • C
    #include
    #include
    int main(int argc,char** argv)
    {
      long ct = 0;
      int n = atoi(argv[1]);
      int a,b,c,d;
      for(a=0;aManfred Scheucher, Jun 09 2015 */
  • Maple
    f:= proc(n)
      local tot, S, a, mult, sa, d, ad, g, cands;
      tot:= 0;
      S:= ListTools:-Classify(t -> t^2 mod n, [$0..n-1]);
      for a in numtheory:-divisors(n) do
        mult:= numtheory:-phi(n/a);
        sa:= a^2 mod n;
        for d in S[sa] do
           g:= igcd(a+d,n);
           cands:= [seq(i*n/g, i=0..g-1)];
           tot:= tot + mult * numboccur(sa,[seq(seq(s*t,s=cands),t=cands)] mod n);
        od
      od;
      tot
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 09 2015
  • Mathematica
    a[m_] := Count[Table[Mod[MatrixPower[Partition[IntegerDigits[n, m, 4], 2], 2], m] == {{0, 0}, {0, 0}}, {n, 0, m^4 - 1}], True]; Table[a[n], {n,2,30}] (* Ben Branman, Mar 22 2013 *)

Extensions

More terms from Ben Branman, Mar 22 2013
More terms from Manfred Scheucher, Jun 09 2015
Previous Showing 101-110 of 153 results. Next