A337111
Number of length four 1..n vectors that contain their geometric mean.
Original entry on oeis.org
1, 2, 3, 16, 17, 18, 19, 56, 105, 106, 107, 144, 145, 146, 147, 208, 209, 306, 307, 320, 321, 322, 323, 432, 529, 530, 723, 736, 737, 738, 739, 968, 969, 970, 971, 1176, 1177, 1178, 1179, 1288, 1289, 1290, 1291, 1304, 1401, 1402, 1403, 1608, 1777, 2018, 2019, 2032
Offset: 1
For n = 2 the a(2) = 2 solutions are: (1,1,1,1) and (2,2,2,2).
For n = 4 the a(4) = 16 solutions are:
(1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (4, 4, 4, 4),
and the 12 permutations of (1, 2, 2, 4).
For n = 40, the a(40)-a(39) = 109 new solutions are:
(40,40,40,40),
the 24 permutations of (1, 10, 25, 40),
the 12 permutations of (5, 5, 10, 40),
the 12 permutations of (5, 20, 40, 40),
the 24 permutations of (8, 20, 25, 40),
the 12 permutations of (10, 20, 20, 40),
and the 24 permutations of (25, 27, 30, 40).
-
first(n) = { my(res = vector(n)); s = 0; for(i = 1, n, s += b(i); res[i] = s; ); res }
b(n) = {my(resa = 1); my(s = factorback(factor(n)[, 1])); for(i = 1, n \ s - 1, s4 = (s*i)^3; if(s4 % n == 0, c = tuples((s*i)^3/n, s*i, n); for(i = 1, #c, resa+=qperms(c[i]) ) ) ); resa }
qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1,if(v[i]==v[i+1],t++,r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)}
tuples(n, s, u) = {my(res = List(), u4n, d, i); d = divisors(n); i = (#d + 1) \ 2; while(i > 0 && d[#d - i + 1] <= u, c = vecsort([d[i], d[#d - i + 1], s, u]); listput(res, c); i--); res} \\ David A. Corneth, Aug 28 2020
A137401
a(n) is the number of ordered solutions (x,y,z) to x^3 + y^3 == z^3 mod n with 1 <= x,y,z <= n-1.
Original entry on oeis.org
0, 0, 2, 7, 12, 20, 0, 63, 116, 72, 90, 131, 0, 108, 182, 339, 240, 602, 324, 415, 326, 420, 462, 839, 604, 216, 1808, 763, 756, 812, 810, 1735, 992, 1056, 1092, 3311, 648, 1620, 650, 2511, 1560, 1640, 1134, 2227, 4328, 1980, 2070, 3683, 2484, 2644, 2450, 1519
Offset: 1
Neven Juric (neven.juric(AT)apis-it.hr), Apr 11 2008
a(4)=7 because (1, 2, 1), (1, 3, 2), (2, 1, 1), (2, 2, 2), (2, 3, 3), (3, 1, 2), (3, 2, 3) are solutions for n=4.
-
f[n_] := Block[ {c = 0}, Do[ If[ Mod[x^3 + y^3, n] == Mod[z^3, n], c++ ], {x, n - 1}, {y, n - 1}, {z, n - 1}]; c];
Table[Length[Select[Tuples[Range[n - 1], 3], Mod[ #[[1]]^3 + #[[2]]^3 - #[[3]]^3, n] == 0 &]], {n, 2, 50}] (* Stefan Steinerberger, Apr 12 2008 *)
-
def A137401(n):
ndict = {}
for i in range(1,n):
m = pow(i,3,n)
if m in ndict:
ndict[m] += 1
else:
ndict[m] = 1
count = 0
for i in ndict:
ni = ndict[i]
for j in ndict:
k = (i+j) % n
if k in ndict:
count += ni*ndict[j]*ndict[k]
return count # Chai Wah Wu, Jun 06 2017
A276919
Number of solutions to x^3 + y^3 + z^3 + t^3 == 1 (mod n) for 1 <= x, y, z, t <= n.
Original entry on oeis.org
1, 8, 27, 64, 125, 216, 336, 512, 1296, 1000, 1331, 1728, 1794, 2688, 3375, 4096, 4913, 10368, 7410, 8000, 9072, 10648, 12167, 13824, 15625, 14352, 34992, 21504, 24389, 27000, 30225, 32768, 35937, 39304, 42000, 82944, 48396, 59280, 48438, 64000, 68921, 72576, 77529, 85184, 162000, 97336
Offset: 1
-
JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 1], {n, 1, 50}]
-
a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 1)))); \\ Michel Marcus, Oct 11 2016
-
qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)}
a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1, 4, Mod(v[i], n)^3)==1, print1(v", "); t+=qperms(v)),1);t} \\ David A. Corneth, Oct 11 2016
-
def A276919(n):
ndict = {}
for i in range(n):
i3 = pow(i,3,n)
for j in range(i+1):
j3 = pow(j,3,n)
m = (i3+j3) % n
if m in ndict:
if i == j:
ndict[m] += 1
else:
ndict[m] += 2
else:
if i == j:
ndict[m] = 1
else:
ndict[m] = 2
count = 0
for i in ndict:
j = (1-i) % n
if j in ndict:
count += ndict[i]*ndict[j]
return count # Chai Wah Wu, Jun 06 2017
A276920
Number of solutions to x^3 + y^3 + z^3 + t^3 == 0 (mod n) for 1 <= x, y, z, t <= n.
Original entry on oeis.org
1, 8, 27, 72, 125, 216, 595, 704, 1539, 1000, 1331, 1944, 3133, 4760, 3375, 5632, 4913, 12312, 8911, 9000, 16065, 10648, 12167, 19008, 16125, 25064, 45927, 42840, 24389, 27000, 35371, 47104, 35937, 39304, 74375, 110808, 58645, 71288, 84591, 88000
Offset: 1
For n = 3, we see that all nondecreasing solutions {x, y, z, t} are in {{1, 1, 1, 3}, {1, 1, 2, 2}, {1, 2, 3, 3}, {2, 2, 2, 3}, {3, 3, 3, 3}}. The numbers in the sets can be ordered in 4, 6, 12, 4 and 1 ways respectively. Therefore, a(3) = 4 + 6 + 12 + 4 + 1 = 27. - _David A. Corneth_, Oct 11 2016
-
CF:= table([[false, false, true] = 12, [true, false, false] = 12, [true, false, true] = 6, [false, false, false] = 24, [true, true, true] = 1, [false, true, true] = 4, [false, true, false] = 12, [true, true, false] = 4]):
f1:= proc(n)
option remember;
local count, t, x,y,z,signature;
if isprime(n) and n mod 3 = 2 then return n^3 fi;
count:= 0;
for t from 1 to n do
for x from 1 to t do
for y from 1 to x do
for z from 1 to y do
if t^3 + x^3 + y^3 + z^3 mod n = 0 then
signature:= map(evalb,[z=y,y=x,x=t]);
count:= count + CF[signature];
fi
od od od od;
count
end proc:
f:= proc(n) local t;
mul(f1(t[1]^t[2]),t=ifactors(n)[2])
end proc:
map(f, [$1..40]); # Robert Israel, Oct 13 2016
-
JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 0], {n, 1, 50}]
-
a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 0)))); \\ Michel Marcus, Oct 11 2016
-
qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i, t+1);t=0));r*=binomial(#v,t+1)}
a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1,4,Mod(v[i],n)^3)==0, t+=qperms(v)),1);t} \\ David A. Corneth, Oct 11 2016
-
def A276920(n):
ndict = {}
for i in range(n):
i3 = pow(i,3,n)
for j in range(i+1):
j3 = pow(j,3,n)
m = (i3+j3) % n
if m in ndict:
if i == j:
ndict[m] += 1
else:
ndict[m] += 2
else:
if i == j:
ndict[m] = 1
else:
ndict[m] = 2
count = 0
for i in ndict:
j = (-i) % n
if j in ndict:
count += ndict[i]*ndict[j]
return count # Chai Wah Wu, Jun 06 2017
A372882
a(n) = Sum_{k=1..n} gcd(k^3,n).
Original entry on oeis.org
1, 3, 5, 10, 9, 15, 13, 36, 33, 27, 21, 50, 25, 39, 45, 104, 33, 99, 37, 90, 65, 63, 45, 180, 145, 75, 261, 130, 57, 135, 61, 336, 105, 99, 117, 330, 73, 111, 125, 324, 81, 195, 85, 210, 297, 135, 93, 520, 385, 435, 165, 250, 105, 783, 189, 468, 185, 171, 117, 450
Offset: 1
-
a[n_] := Sum[GCD[k^3, n], {k, 1, n}]; Array[a, 100] (* Amiram Eldar, May 24 2024 *)
-
a(n) = sum(k=1, n, gcd(k^3, n));
Comments