cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 1353 results. Next

A086652 a(n) = A000225(n+3)-A052955(n).

Original entry on oeis.org

6, 13, 28, 58, 120, 244, 496, 1000, 2016, 4048, 8128, 16288, 32640, 65344, 130816, 261760, 523776, 1047808, 2096128, 4192768, 8386560, 16774144, 33550336, 67102720, 134209536, 268423168, 536854528, 1073717248, 2147450880
Offset: 0

Views

Author

Marco Matosic, Jul 27 2003

Keywords

Crossrefs

Programs

  • Maple
    f:=n->2^(n+3)-((5-(-1)^n)/2)*2^((2*n-1+(-1)^n)/4);

Formula

a(2n) = A006516(n+2); a(2n+1) = A086221(n+1).
G.f.: ( 6+x-10*x^2 ) / ( (2*x-1)*(2*x^2-1) ). - R. J. Mathar, Sep 15 2012
a(n) = 2^(n+3)-((5-(-1)^n)/2)*2^((2*n-1+(-1)^n)/4). - Luce ETIENNE, Sep 23 2014

Extensions

Edited and extended by David Wasserman, Feb 17 2005

A224520 Numbers a(n) with property a(n) + a(n+4) = 2^(n+4) - 1 = A000225(n+4).

Original entry on oeis.org

0, 1, 3, 7, 15, 30, 60, 120, 240, 481, 963, 1927, 3855, 7710, 15420, 30840, 61680, 123361, 246723, 493447, 986895, 1973790, 3947580, 7895160, 15790320, 31580641, 63161283, 126322567, 252645135, 505290270, 1010580540
Offset: 0

Views

Author

Arie Bos, Apr 09 2013

Keywords

Comments

This is the case k=4 of a(n) + a(n+k) = 2^(n+k) - 1 = A000225(n+k). The sequences A000975, A077854 and A153234 correspond to cases k=1,2 and 3, respectively.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x/((1 - x)*(1 - 2*x)*(1 + x^4)), {x, 0, 50}], x] (* G. C. Greubel, Oct 11 2017 *)
    LinearRecurrence[{3,-2,0,-1,3,-2},{0,1,3,7,15,30},40] (* Harvey P. Dale, Aug 23 2021 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x/((1-x)*(1-2*x)*(1+x^4)))) \\ G. C. Greubel, Oct 11 2017
    
  • Python
    print([2**(n+4)//17 for n in range(31)]) # Karl V. Keller, Jr., Jun 30 2021

Formula

a(n) + a(n+4) = 2^(n+4) - 1.
From Joerg Arndt, Apr 09 2013: (Start)
G.f.: x/((1-x)*(1-2*x)*(1+x^4)).
a(n) = +3*a(n-1) -2*a(n-2) -1*a(n-4) +3*a(n-5) -2*a(n-6). (End)
a(n) = floor(2^(n+4)/17). - Karl V. Keller, Jr., Jun 30 2021

A227843 Numbers n such that the binary XOR of the divisors of n (A178910(n)) is a binary repunit (A000225).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2592, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 2458624, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1

Views

Author

Alex Ratushnyak, Jul 06 2013

Keywords

Comments

These are also numbers n such that A178910(n) >= A178910(i) for all i
All powers of 2 are in the sequence. Terms that are not 2^x are 2592 and 2458624. No other non-2^x terms below 2^35.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Union@ IntegerDigits[ Fold[ BitXor[#1, #2] &, 0, Divisors@ n], 2] == {1}; Select[ Range@ 1000000000, fQ] (* Robert G. Wilson v, Aug 22 2013 *)

A247092 Limiting sequence obtained by taking the sequence of Mersenne numbers 2^n-1, n=1,2,...(A000225) and applying an infinite process which is described in the comments.

Original entry on oeis.org

1, 0, 4, 2, 0, 32, 8, 1, 0, 64, 4, 0, 1024, 32, 0, 32768, 512, 4, 0, 16384, 64, 0, 1048576, 2048, 2, 0, 131072, 64, 0, 16777216, 4096, 0, 4294967296, 524288, 32, 0, 134217728, 4096, 0, 68719476736, 1048576, 8, 0, 536870912, 2048, 0, 549755813888, 1048576, 1, 0
Offset: 1

Author

Keywords

Comments

Write the Mersenne numbers 2^n-1, n=1,2,..., in binary in form of triangle T_0(M) consisting of all 1's:
1
11
111
1111
11111
......
Let the operator A_k map every k-th entry to its binary opposite (1->0, 0->1), for k=2,3,... . Put T_inf(M) = ...*A_4*A_3*A_2(T_(0)M), with successive applications of the operators A_2, A_3, A_4, ...
Note that the (0,1)-triangle T_inf(M) is well-defined, since the operator T_n does not affect entries in the first floor((sqrt(8*n-7) - 1)/2) rows.
The sequence lists numbers obtained by reading rows of T_inf(M) in binary and converting them to decimal.
The n-th entry t_n of T_inf(M) equals 1, if n is perfect square, and 0 otherwise (A010052, for n>=1).
Indeed, in order to get an entry t_n of T_inf(M), we should use all considered operators A_d, d|n, d>1. The number of these operators is the diminished on 1 the number of divisors of n which is even iff n is a perfect square. Thus only in this case we obtain that entry in the n-th position is flipped, beginning with 1, an even number of times, such that t_n=1, while, if n is nonsquare, t_n=0.
Note that, since (n+1)^2 - n^2 > n, then in every row of T_inf(M) there exists at most one 1. So every term is either 0 or a power of 2.

Examples

			T_inf(M) begins
1
00
100
0010
00000
100000
0001000
00000001
.........
Let n=4. Then the interval in the formula is [sqrt(7), sqrt(10)], so x=3 and a(4) = 2^(10-9) = 2.
		

Crossrefs

Programs

Formula

If there is an integer x in [sqrt((n-1)*n/2 +1), sqrt(n*(n+1)/2)] then it is unique and a(n) = 2^(n(n+1)/2-x^2); otherwise, a(n)=0.
Thus there are n/sqrt(2) + O(1) positive terms among the first n.

Extensions

a(25)-a(50) from Charles R Greathouse IV, Nov 19 2014

A260757 Least k > 0 such that M(n)^2 - 2k is prime, where M(n) = 2^n - 1 = A000225(n).

Original entry on oeis.org

1, 2, 1, 1, 1, 4, 1, 1, 7, 10, 1, 10, 1, 10, 5, 1, 14, 24, 1, 1, 13, 1, 16, 3, 82, 1, 19, 1, 23, 94, 64, 58, 7, 6, 14, 3, 46, 22, 5, 13, 107, 69, 38, 90, 59, 75, 104, 25, 4, 10, 14, 4, 44, 10, 5, 1, 77, 81, 85, 94, 71, 9, 14, 111, 13, 27, 20, 9, 37, 6, 5, 4, 62, 12, 38, 4, 37
Offset: 0

Author

M. F. Hasler, Jul 30 2015

Keywords

Comments

For n = 0 and n = 1, no k > 0 can yield a positive prime, the given values are the smallest to yield the opposite of a positive prime: M(0)^2 - 2*1 = 0 - 2 = -2 and M(1)^2 - 2*2 = 1 - 4 = -3.

Examples

			For n = 2, M(2) = 2^2 - 1 = 3 and 3*3 - 2k = 7 is a prime for k=1, thus a(2) = 1.
For n = 3, M(3) = 2^3 - 1 = 7 and 7*7 - 2k = 47 is a prime for k=1, thus a(3) = 1.
For n = 4, M(4) = 2^4 - 1 = 15 and 15*15 - 2k = 223 is a prime for k=1, thus a(4) = 1.
For n = 5, M(5) = 2^5 - 1 = 31 and 31*31 - 2k = 953 is prime for k=4 and no smaller k, thus a(5) = 4.
		

Crossrefs

Cf. A091515 (a(n)=1 for n > 0), A260758.

Programs

  • Maple
    f:= proc(n) local r;
      r:= (2^n-1)^2;
      (r - prevprime(r))/2
    end proc:
    f(0):=1: f(1):= 2:
    map(f, [$0..100]); # Robert Israel, Apr 02 2020
  • Mathematica
    f[n_] := Module[{r = (2^n - 1)^2}, (r - NextPrime[r, -1])/2 ];
    f[0] = 1; f[1] = 2;
    f /@ Range[0, 100] (* Jean-François Alcover, Jul 28 2020, after Robert Israel *)
  • PARI
    a(n)={n>1&&for(k=1,9e9,ispseudoprime((2^n-1)^2-2*k)&&return(k));n+1}

Formula

a(n) = 1 for n=0 or n in A091515.

A087100 A000225 (2^n - 1) interlaced with A008593 (11n).

Original entry on oeis.org

0, 1, 11, 3, 22, 7, 33, 15, 44, 31, 55, 63, 66, 127, 77, 255, 88, 511, 99, 1023, 110, 2047, 121, 4095, 132, 8191, 143, 16383, 154, 32767, 165, 65535, 176, 131071, 187, 262143, 198, 524287, 209, 1048575, 220, 2097151, 231, 4194303, 242, 8388607, 253
Offset: 0

Author

Jeremy Gardiner, Aug 10 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[With[{nn=30},Riffle[2^Range[0,nn]-1,11Range[0,nn]]]] (* Harvey P. Dale, Aug 15 2011 *)

Formula

From Chai Wah Wu, Feb 02 2021: (Start)
a(n) = 4*a(n-2) - 5*a(n-4) + 2*a(n-6) for n > 5.
G.f.: x*(22*x^3 + x^2 - 11*x - 1)/((x - 1)^2*(x + 1)^2*(2*x^2 - 1)). (End)

A140407 A000225 interleaved with A000051.

Original entry on oeis.org

1, 2, 3, 3, 7, 5, 15, 9, 31, 17, 63, 33, 127, 65, 255, 129, 511, 257, 1023, 513, 2047, 1025, 4095, 2049, 8191, 4097, 16383, 8193, 32767, 16385, 65535, 32769, 131071, 65537, 262143, 131073, 524287, 262145, 1048575, 524289, 2097151, 1048577, 4194303
Offset: 0

Author

Paul Curtz, Jun 16 2008

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1,2,2},{1,2,3},50] (* Harvey P. Dale, Apr 03 2013 *)
  • Python
    def A140407(n): return 2 if n == 1 else (1<<(n>>1))|1 if n&1 else -1^(-2<<(n>>1)) # Chai Wah Wu, Dec 21 2022

Formula

a(2n) = A000225(n+1) = A135530(2n) - 1. a(2n+1) = A000051(n) = 1 + A135530(2n+1).
a(n) = -a(n-1) + 2*a(n-2) + 2*a(n-3). a(2n) + a(2n+1) = 3*A000079(n).
O.g.f.: (1 + 3x + 3x^2)/((1+x)*(1-2x^2)). - R. J. Mathar, Jul 08 2008

Extensions

Edited and extended by R. J. Mathar, Jul 08 2008

A140745 Smallest prime p such that the Mersenne number A000225(p) = 2^p - 1 has exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

2, 11, 29, 157, 113, 223, 491, 431, 397
Offset: 1

Author

Lekraj Beedassy, Jul 12 2008

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 223, pp 63-4, Ellipse Paris 2008.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{p=0},Until[PrimeOmega[2^Prime[p]-1]==n,p++];Prime[p]];Array[a,6] (* James C. McMahon, Jul 14 2025 *)
  • PARI
    a(n) = forprime(p=2, oo, if(bigomega(2^p-1)==n, return(p))); \\ Jinyuan Wang, Aug 10 2021

A140769 Numbers n such that consecutive Mersenne numbers A000225(n-1) = M(n-1) = 2^(n-1) - 1 and A000225(n) = M(n) = 2^n - 1 are both squarefree.

Original entry on oeis.org

2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 17, 23, 26, 27, 28, 29, 32, 33, 34, 35, 38, 39, 44, 45, 46, 47, 50, 51, 52, 53, 56, 57, 58, 59, 62, 65, 68, 69, 70, 71, 74, 75, 76, 77, 82, 83, 86, 87, 88, 89, 92, 93, 94, 95, 98, 99, 104, 107, 112, 113, 116, 117, 118, 119, 122, 123, 124
Offset: 1

Author

Lekraj Beedassy, Jul 13 2008

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Footnote pp 18, Ellipses, Paris 2008.

Crossrefs

A221975 Triangle read by rows of the numbers that are the sum of some consecutive Mersenne numbers A000225.

Original entry on oeis.org

1, 3, 4, 7, 10, 11, 15, 22, 25, 26, 31, 46, 53, 56, 57, 63, 94, 109, 116, 119, 120, 127, 190, 221, 236, 243, 246, 247, 255, 382, 445, 476, 491, 498, 501, 502, 511, 766, 893, 956, 987, 1002, 1009, 1012, 1013, 1023, 1534, 1789, 1916, 1979, 2010, 2025, 2032, 2035, 2036
Offset: 1

Author

Omar E. Pol, Feb 12 2013

Keywords

Examples

			Triangle begins:
1;
3,     4;
7,    10,  11;
15,   22,  25,  26;
31,   46,  53,  56,  57;
63,   94, 109, 116, 119, 120;
127, 190, 221, 236, 243, 246, 247;
255, 382, 445, 476, 491, 498, 501, 502;
...
		

Crossrefs

Column 1 is A000225. Right border gives the positive terms of A000295.

Formula

T(n,k) = sum_{j = n-k+1..n} 2^j - 1, n>=1, k>=1.
T(n,n) = A000295(n+1).
Previous Showing 21-30 of 1353 results. Next