cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 1353 results. Next

A224521 Numbers a(n) with property a(n) + a(n+5) = 2^(n+5) - 1 = A000225(n+5).

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 62, 124, 248, 496, 992, 1985, 3971, 7943, 15887, 31775, 63550, 127100, 254200, 508400, 1016800, 2033601, 4067203, 8134407, 16268815, 32537631, 65075262, 130150524, 260301048, 520602096, 1041204192, 2082408385, 4164816771, 8329633543
Offset: 0

Views

Author

Arie Bos, Apr 09 2013

Keywords

Comments

This is the case k=5 of a(n) + a(n+k) = 2^(n+k) - 1 = A000225(n+k). The sequences A000975, A077854, A153234 and A224520 correspond to cases k=1,2,3 and 4, respectively.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x/((1-x)*(1-2*x)*(1+x^5)) )); // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    CoefficientList[Series[x/((1-x)*(1-2*x)*(1+x^5)), {x,0,40}], x] (* G. C. Greubel, Oct 11 2017 *)
    LinearRecurrence[{3,-2,0,0,-1,3,-2},{0,1,3,7,15,31,62},40] (* Harvey P. Dale, Apr 29 2020 *)
  • PARI
    my(x='x+O('x^40)); concat([0], Vec(x/((1-x)*(1-2*x)*(1+x^5)))) \\ G. C. Greubel, Oct 11 2017
    
  • Python
    print([2**(n+5)//33 for n in range(31)]) # Karl V. Keller, Jr., Jul 03 2021
  • Sage
    (x/((1-x)*(1-2*x)*(1+x^5))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019
    

Formula

a(n) + a(n+5) = 2^(n+5) - 1.
From Joerg Arndt, Apr 09 2013: (Start)
G.f.: x/((1-x)*(1+x)*(1-2*x)*(1-x+x^2-x^3+x^4)).
a(n) = +3*a(n-1) -2*a(n-2) -1*a(n-5) +3*a(n-6) -2*a(n-7). (End)
a(n) = floor(2^(n+5)/33). - Karl V. Keller, Jr., Jul 03 2021

A260758 Least k > 0 such that M(n)^2 + 2k is prime, where M(n) = 2^n - 1 = A000225(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 10, 5, 1, 3, 14, 11, 4, 5, 4, 5, 8, 30, 2, 6, 1, 8, 29, 12, 29, 30, 11, 2, 4, 5, 19, 29, 2, 9, 7, 11, 4, 74, 16, 24, 8, 18, 10, 30, 56, 15, 35, 24, 4, 35, 19, 111, 19, 18, 1, 57, 8, 20, 14, 2, 2, 48, 29, 26, 92, 24, 19, 155, 2, 78, 35, 56, 113, 33, 70, 32, 7
Offset: 0

Views

Author

M. F. Hasler, Jul 30 2015

Keywords

Examples

			M(0)^2 + 2*1 = 0 + 2 = 2 is prime, thus a(0)=1.
M(1)^2 + 2*1 = 1 + 2 = 3 is prime, thus a(1)=1.
M(2) = 2^2-1 = 3 and 3*3 + 2k = 11 is a prime for k=1, thus a(2) = 1.
M(3) = 2^3-1 = 7 and 7*7 + 2k = 53 is a prime for k=2 but not for k=1, thus a(3) = 2.
M(4) = 2^4-1 = 15 and 15*15 + 2k = 227 is a prime for k=1, thus a(4) = 1.
		

Crossrefs

Cf. A260757.

Programs

  • PARI
    a(n)=for(k=1,9e9,ispseudoprime((2^n-1)^2+2*k)&&return(k))

A282534 Integers that are powers of Mersenne numbers A000225 (i.e., of the form (2^n - 1)^m).

Original entry on oeis.org

1, 3, 7, 9, 15, 27, 31, 49, 63, 81, 127, 225, 243, 255, 343, 511, 729, 961, 1023, 2047, 2187, 2401, 3375, 3969, 4095, 6561, 8191, 16129, 16383, 16807, 19683, 29791, 32767, 50625, 59049, 65025, 65535, 117649, 131071, 177147, 250047, 261121, 262143, 524287, 531441, 759375
Offset: 1

Views

Author

Andrew Ivashenko, Feb 18 2017

Keywords

Comments

The cardinality of the set of subsets in a multiset excluding empty subsets.

Examples

			3 = (2^2-1), 7 = (2^3-1), 9 = (2^2-1)^2, 81 = (2^2-1)^4, 1070599167 = (2^10-1)^3.
		

Crossrefs

Programs

  • Mathematica
    mx = 10^6; Union@ Flatten@ {1, #^Range[Log[#, mx]] & /@ (2^ Range[2, Log2@ mx] -1)} (* Giovanni Resta, Mar 08 2017 *)
  • PARI
    ismn(n) = n++; n == 2^valuation(n,2);
    isok(n) = ismn(n) || (ispower(n,,&m) && ismn(m)); \\ Michel Marcus, Feb 18 2017

Extensions

More terms from Michel Marcus, Feb 18 2017

A295584 Odd numbers that are not a product of Mersenne numbers (A000225).

Original entry on oeis.org

5, 11, 13, 17, 19, 23, 25, 29, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 129, 131, 133, 137, 139, 141, 143, 145, 149, 151, 153
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2017

Keywords

Comments

Numbers m such that no commutative ring has m units.

Crossrefs

Odd numbers not in A282572; complement of A296241.
Cf. A000225.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    P:= {1}:
    for k from 2 do
      m:= 2^k-1;
      if m > N then break fi;
      P:= map(p -> seq(p*m^j, j=0..floor(log[m](N/p))), P);
    od:
    sort(convert({seq(i,i=1..N,2)} minus P, list)); # Robert Israel, Dec 15 2017
  • Mathematica
    nn == 1000;
    P = {1};
    For[k = 2, True, k++,
       m = 2^k - 1;
       If[m > nn, Break[]
    ];
    P = (Function[p, Table[p m^j, {j, 0, Log[m, nn/p]}]] /@ P) // Flatten];
    Range[1, nn, 2] ~Complement~ P (* Jean-François Alcover, Sep 18 2018, after Robert Israel *)

A318164 a(n) = A000225(n)^A000217(n-1), n > 0.

Original entry on oeis.org

1, 3, 343, 11390625, 819628286980801, 977480813971145474830595007, 151313661355466579537756144585602921111718527, 24161564501550368558430041444810830996032029256261885166168212890625
Offset: 1

Views

Author

Muniru A Asiru, Aug 19 2018

Keywords

Examples

			For n = 3, a(3) = 7^3 = 343.
		

References

  • Bijan Davvaz, Polygroup theory and related systems, World Scientific Publishing Co. Plc. Ltd., New Jersey, (2013), p. 157 (for a(3) = 7^3 = 343).

Crossrefs

Programs

  • GAP
    List([1..8],n->(2^n-1)^(n*(n-1)/2));
    
  • Magma
    SetDefaultRealField(RealField(100)); [Round((2^n-1)^(n*(n-1)/2)): n in [1..8]]; // G. C. Greubel, Oct 19 2018
  • Maple
    a:=n->(2^n-1)^(n*(n-1)/2): seq(a(n),n=1..8);
  • Mathematica
    a[n_] := (2^n-1)^(n*(n-1)/2); Array[a, 8] (* Stefano Spezia, Sep 02 2018 *)
  • PARI
    a(n) = (2^n-1)^(n*(n-1)/2); \\ Michel Marcus, Aug 21 2018
    

Formula

a(n) = (2^n - 1)^(n*(n - 1)/2), n > 0.

A336104 Number of permutations of the prime indices of A000225(n) = 2^n - 1 with at least one non-singleton run.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 96, 0, 120, 6, 0, 0, 720, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 322560, 0, 0, 0, 5040, 0, 4320, 0, 0, 0, 0, 0, 362880, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(21) = 6 permutations of {4, 4, 31, 68}:
  (4,4,31,68)
  (4,4,68,31)
  (31,4,4,68)
  (31,68,4,4)
  (68,4,4,31)
  (68,31,4,4)
		

Crossrefs

A335432 is the anti-run version.
A335459 is the version for factorial numbers.
A336105 counts all permutations of this multiset.
A336107 is not restricted to predecessors of powers of 2.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A008480 counts permutations of prime indices.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A333489 ranks anti-run compositions.
A335433 lists numbers whose prime indices have an anti-run permutation.
A335448 lists numbers whose prime indices have no anti-run permutation.
A335452 counts anti-run permutations of prime indices.
A335489 counts strict permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[2^n-1]],MatchQ[#,{_,x_,x_,_}]&]],{n,30}]

Formula

a(n) = A336107(2^n - 1).
a(n) = A336105(n) - A335432(n).

A057613 Numbers that are both lucky numbers (A000959) and of form 2^k-1 (A000225).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 511, 1023, 4095, 8191, 131071, 524287, 2097151, 4194303, 8388607, 33554431, 67108863, 8589934591
Offset: 1

Views

Author

Naohiro Nomoto, Oct 09 2000

Keywords

Comments

a(20) >= 17179869183 = 2^34 - 1, if it exists. - Kevin P. Thompson, Nov 24 2021

Examples

			a(7) = 127 since A000959(27) = A000225(7) = 127 and it is the 7th such number with this property.
		

Crossrefs

Extensions

More terms from Mark Weston (mweston(AT)uvic.ca), Oct 16 2001
a(18) from Giovanni Resta, May 10 2020
a(19) from Kevin P. Thompson, Nov 24 2021

A063529 a(n) = M(2^n-1), where M() is A029834, a discrete version of the Mangoldt function: if n is prime then floor(log(n)) else 0 and 2^n-1 is A000225.

Original entry on oeis.org

0, 1, 1, 0, 3, 0, 4, 0, 0, 0, 0, 0, 9, 0, 0, 0, 11, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 61, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jason Earls, Aug 01 2001

Keywords

Crossrefs

Programs

  • PARI
    j=[]; for(n=1,150,j=concat(j, if(isprime(2^n-1),floor(log(2^n-1)),))); j

A157968 2^n - 1 (A000225) where n is nonprime number (A141468).

Original entry on oeis.org

0, 1, 15, 63, 127, 255, 511, 1023, 4095, 16383, 32767, 65535, 262143, 1048575, 2097151, 4194303, 16777215, 33554431, 67108863, 134217727, 268435455, 1073741823, 4294967295
Offset: 0

Views

Author

Jani Melik, Mar 10 2009

Keywords

Comments

a(0) = 0 since 2^0 - 1 = 0 and 0 is nonprime, a(1) = 1 since 2^1 - 1 = 1 and 1 is nonprime, a(2) = 15 since 2^4 - 1 = 15 and 4 is nonprime, ...

Crossrefs

A261514 Indices of Mersenne numbers (A000225) of the form x^2 + xy + y^2.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 9, 13, 14, 15, 17, 18, 19, 21, 25, 26, 27, 31, 37, 38, 39, 42, 45, 49, 51, 54, 57, 61, 62, 63, 65, 67, 74, 75, 78, 81, 85, 89, 93, 98, 101, 103, 107, 111, 114, 117, 122, 125, 126, 127, 133, 134, 135, 139, 147, 153, 162, 171, 183, 186, 189, 195
Offset: 1

Views

Author

Altug Alkan, Nov 18 2015

Keywords

Comments

Inspired by intersection of nice and core sequences. Initial Mersenne numbers of the form x^2 + xy + y^2 are 0, 1, 3, 7, 31, 63, 127, 511, 8191, 16383.

Examples

			a(4) = 3 because 2^3 - 1 = 1^2 + 1*2 + 2^2 = 7.
a(5) = 5 because 2^5 - 1 = 1^2 + 1*5 + 5^2 = 31.
		

Crossrefs

Programs

  • PARI
    is(n)=#bnfisintnorm(bnfinit(z^2+z+1), 2^n-1);
    for(n=0, 200, if(n==0 || is(n), print1(n, ", ")))
Previous Showing 31-40 of 1353 results. Next