cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 47 results. Next

A321268 Number of permutations on [n] whose up-down signature has nonnegative partial sums and which have exactly two descents.

Original entry on oeis.org

0, 0, 0, 0, 22, 172, 856, 3488, 12746, 43628, 143244, 457536, 1434318, 4438540, 13611136, 41473216, 125797010, 380341580, 1147318004, 3455325600, 10394291094, 31242645420, 93853769320, 281825553760, 846030314842, 2539248578732, 7620161662556, 22865518160768
Offset: 1

Views

Author

Sam Spiro, Nov 01 2018

Keywords

Comments

Also the number of permutations of [n] of odd order whose M statistic (as defined in the Spiro paper) is equal to two.

Examples

			Some permutations counted by a(5) include 14253 and 34521.
		

Crossrefs

Column k=2 of A321280.

Programs

  • Mathematica
    a[1] = 0; a[n_] := 2n^2 - 2n - 1 - n 2^(n-1) - 2 Binomial[n, 3] + Sum[ Binomial[n, k] (2^k - 2k), {k, 0, n}];
    Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Nov 11 2018 *)
  • PARI
    a(n)={if(n<2, 0, 2*n^2 - 2*n - 1 - n*2^(n-1) - 2*binomial(n,3) + sum(k=0, n, binomial(n, k)*(2^k - 2*k)))} \\ Andrew Howroyd, Nov 01 2018
    
  • PARI
    concat([0,0,0,0], Vec(2*x^5*(11 - 35*x + 32*x^2 - 6*x^3) / ((1 - x)^4*(1 - 2*x)^2*(1 - 3*x)) + O(x^40))) \\ Colin Barker, Mar 07 2019

Formula

a(n) = 3*A008292(n-1,3)- 2*binomial(n,3)+binomial(n,2)-1 for n > 1.
a(n) = A065826(n-1,3)- 2*binomial(n,3)+binomial(n,2)-1 for n > 1.
a(n) = 3^n-3*n*2^(n-1)-2*binomial(n,3)+4*binomial(n,2)-1 for n > 1.
From Colin Barker, Mar 07 2019: (Start)
G.f.: 2*x^5*(11 - 35*x + 32*x^2 - 6*x^3) / ((1 - x)^4*(1 - 2*x)^2*(1 - 3*x)).
a(n) = 11*a(n-1) - 50*a(n-2) + 122*a(n-3) - 173*a(n-4) + 143*a(n-5) - 64*a(n-6) + 12*a(n-7) for n>8.
a(n) = -1 + 3^n - (16+9*2^n)*n/6 + 3*n^2 - n^3/3 for n>1.
(End)

A321269 Number of permutations on [n] whose up-down signature has nonnegative partial sums and which have exactly three descents.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 604, 7296, 54746, 330068, 1756878, 8641800, 40298572, 180969752, 790697160, 3385019968, 14270283414, 59457742524, 245507935018, 1006678811272, 4105447763032, 16672235476128, 67482738851220, 272439143364672, 1097660274098482, 4415486996246052
Offset: 1

Views

Author

Sam Spiro, Nov 01 2018

Keywords

Comments

Also the number of permutations of [n] of odd order whose M statistic (as defined in the Spiro paper) is equal to three.

Examples

			The permutations counted by a(7) include 1237654 and 17265243.
		

Crossrefs

Column k=3 of A321280.

Programs

  • Mathematica
    t[n_, k_] := Sum[(-1)^j (k - j)^n Binomial[n + 1, j], {j, 0, k}];
    a[n_] := If[n<7, 0, 4 t[n-1, 4] - (Binomial[n, 3] - Binomial[n, 2] + 4) * 2^(n-2) - 22 Binomial[n, 5] + 16 Binomial[n, 4] - 4 Binomial[n, 3] + 2n];
    Array[a, 30] (* Jean-François Alcover, Feb 29 2020, from Sam Spiro's 1st formula *)
  • PARI
    concat([0,0,0,0,0,0], Vec(2*x^7*(302 - 3600*x + 18341*x^2 - 52006*x^3 + 89327*x^4 - 94728*x^5 + 61016*x^6 - 23368*x^7 + 5424*x^8 - 576*x^9) / ((1 - x)^6*(1 - 2*x)^4*(1 - 3*x)^2*(1 - 4*x)) + O(x^30))) \\ Colin Barker, Mar 07 2019

Formula

From Sam Spiro, Mar 07 2019: (Start)
a(n) = 4*A008292(n-1,4)-(binomial(n,3)-binomial(n,2)+4)*2^(n-2)-22*binomial(n,5)+16*binomial(n,4)-4*binomial(n,3)+2n for n>3.
a(n) = A065826(n-1,4)-(binomial(n,3)-binomial(n,2)+4)*2^(n-2)-22*binomial(n,5)+16*binomial(n,4)-4*binomial(n,3)+2n for n>3.
a(n) = 4^n-4*n*3^(n-1)+9*binomial(n,2)*2^(n-2)-binomial(n,3)*2^(n-2)-2^n-8*binomial(n,3)-22*binomial(n,5)+16*binomial(n,4)+2*n for n>3.
(End)
From Colin Barker, Mar 07 2019: (Start)
G.f.: 2*x^7*(302 - 3600*x + 18341*x^2 - 52006*x^3 + 89327*x^4 - 94728*x^5 + 61016*x^6 - 23368*x^7 + 5424*x^8 - 576*x^9) / ((1 - x)^6*(1 - 2*x)^4*(1 - 3*x)^2*(1 - 4*x)).
a(n) = 24*a(n-1) - 260*a(n-2) + 1684*a(n-3) - 7278*a(n-4) + 22172*a(n-5) - 49004*a(n-6) + 79596*a(n-7) - 95065*a(n-8) + 82508*a(n-9) - 50616*a(n-10) + 20800*a(n-11) - 5136*a(n-12) + 576*a(n-13) for n>16.
(End)

Extensions

More terms from Alois P. Heinz, Nov 01 2018

A331618 E.g.f.: exp(1 / (1 - arctanh(x)) - 1).

Original entry on oeis.org

1, 1, 3, 15, 97, 785, 7523, 83615, 1053281, 14838177, 230832867, 3929944623, 72633052545, 1447981700529, 30960823851267, 706676217730239, 17145815895371073, 440594781536265537, 11952178787661839427, 341291300477569866831, 10231558345117929439521
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[1/(1 - ArcTanh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    A296676[0] = 1; A296676[n_] := A296676[n] = Sum[Binomial[n, k] If[OddQ[k], (k - 1)!, 0] A296676[n - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A296676[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
  • PARI
    seq(n)={Vec(serlaplace(exp(1/(1 - atanh(x + O(x*x^n))) - 1)))} \\ Andrew Howroyd, Jan 22 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A296676(k) * a(n-k).
a(n) ~ (exp(2) + 1)^(n - 1/4) * n^(n - 1/4) / ((exp(2) - 1)^(n + 1/4) * exp(n - 4*exp(1)*sqrt(n/(exp(4) - 1)) - 2/(exp(4) - 1) - 1/2)). - Vaclav Kotesovec, Jan 26 2020

A086325 Let u(1)=0, u(2)=1, u(k)=u(k-1)+u(k-2)/(k-2); then a(n)=n!*u(n).

Original entry on oeis.org

0, 2, 6, 36, 220, 1590, 12978, 118664, 1201464, 13349610, 161530270, 2114578092, 29780308116, 448995414686, 7215997736010, 123153028027920, 2224451568754288, 42395429898611154, 850263899633257014, 17900292623858042420, 394701452356069835340, 9096928711444657157382, 218739785834282892557026
Offset: 1

Views

Author

N. J. A. Sloane. This sequence appeared in the 1973 "Handbook", but was then omitted from the database. Resubmitted by Benoit Cloitre, Aug 30 2003. Entry revised by N. J. A. Sloane, Jun 11 2012

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263, Table 7.5.1, row 3.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210, Table 3, Three-line Latin rectangles.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:=n->n!*add((-1)^k/k!, k=0..n): seq(a(n)*n, n=1..19); # Zerinvary Lajos, Dec 18 2007
    with (combstruct):with (combinat):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*fibonacci(2,n), n=1..19); # Zerinvary Lajos, Jun 11 2008
    with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*n, n=1..19); # Zerinvary Lajos, Jun 11 2008
  • Mathematica
    Table[Subfactorial[n]*n, {n, 1, 19}] (* Zerinvary Lajos, Jul 09 2009 *)
  • PARI
    a(n) = n*((n! + 1)\exp(1)); \\ Indranil Ghosh, Apr 13 2017

Formula

a(n) = ceiling(n*n!/e) - (1-(-1)^n)/2.
E.g.f.: x^2*exp(-x)/(1-x)^2. - Vladeta Jovovic, Nov 20 2003
a(n) = n*floor((n!+1)/e). [Gary Detlefs, Jul 13 2010]
a(n) = n * A000166(n). [Joerg Arndt, Jul 09 2012]
G.f.: x*f'(x), where f(x) = 1/(1 + x) + Sum_{k>=1} k^k*x^k/(1 + (k + 1)*x)^(k+1). - Ilya Gutkovskiy, Apr 13 2017

A274844 The inverse multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 8, 100, 1664, 34336, 843776, 24046912, 779780096, 28357004800, 1143189536768, 50612287301632, 2441525866790912, 127479926768287744, 7163315850315825152, 431046122080208896000, 27655699473265974050816, 1884658377677216933085184
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The inverse multinomial transform [IML] transforms an input sequence b(n) into the output sequence a(n). The IML transform inverses the effect of the multinomial transform [MNL], see A274760, and is related to the logarithmic transform, see A274805 and the first formula.
To preserve the identity MNL[IML[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL.
In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.
We observe that the inverse multinomial transform leaves the value of a(0) undefined.
The Maple programs can be used to generate the inverse multinomial transform of a sequence. The first program is derived from a formula given by Alois P. Heinz for the logarithmic transform, see the first formula and A001187. The second program uses the e.g.f. for multivariate row polynomials, see A127671 and the examples. The third program uses information about the inverse of the inverse of the multinomial transform, see A274760.
The IML transform of A001818(n) = ((2*n-1)!!)^2 leads quite unexpectedly to A005411(n), a sequence related to certain Feynman diagrams.
Some IML transform pairs, n >= 1: A000110(n) and 1/A000142(n-1); A137341(n) and A205543(n); A001044(n) and A003319(n+1); A005442(n) and A000204(n); A005443(n) and A001350(n); A007559(n) and A000244(n-1); A186685(n+1) and A131040(n-1); A061711(n) and A141151(n); A000246(n) and A000035(n); A001861(n) and A141044(n-1)/A001710(n-1); A002866(n) and A000225(n); A000262(n) and A000027(n).

Examples

			Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = (1/0!) * (1*x(1))
a(2) = (1/1!) * (1*x(2) - x(1)^2)
a(3) = (1/2!) * (1*x(3) - 3*x(2)*x(1) + 2*x(1)^3)
a(4) = (1/3!) * (1*x(4) - 4*x(3)*x(1) - 3*x(2)^2 + 12*x(2)*x(1)^2 - 6*x(1)^4)
a(5) = (1/4!) * (1* x(5) - 5*x(4)*x(1) - 10*x(3)*x(2) + 20*x(3)*x(1)^2 + 30*x(2)^2*x(1) -60*x(2)*x(1)^3 + 24*x(1)^5)
		

References

  • Richard P. Feynman, QED, The strange theory of light and matter, 1985.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: c:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*c(k), k=1..n-1)/n end: a := proc(n): c(n)/(n-1)! end: seq(a(n), n=1..nmax); # End first IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := log(1+add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(exp(add(t(n)*x^n/n, n=1..nmax)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): t(1):= b(1): for n from 2 to nmax+1 do t(n) := solve(d(n)-b(n), t(n)): a(n):=t(n): od: seq(a(n), n=1..nmax); # End third IML program.
  • Mathematica
    nMax = 22; b[n_] := ((2*n-1)!!)^2; c[n_] := c[n] = b[n] - Sum[k*Binomial[n, k]*b[n-k]*c[k], {k, 1, n-1}]/n; a[n_] := c[n]/(n-1)!; Table[a[n], {n, 1, nMax}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

Formula

a(n) = c(n)/(n-1)! with c(n) = b(n) - Sum_{k=1..n-1}(k*binomial(n, k)*b(n-k)*c(k)), n >= 1 and a(0) = undefined, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = A000079(n-1) * A005411(n), n >= 1.

A290384 Number of ordered set partitions of [n] such that the smallest element of each block is odd.

Original entry on oeis.org

1, 1, 1, 3, 5, 23, 57, 355, 1165, 9135, 37313, 352667, 1723605, 19063207, 108468169, 1374019539, 8920711325, 127336119839, 928899673425, 14751357906571, 119445766884325, 2088674728868631, 18588486479073881, 354892573941671363, 3443175067395538605
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Comments

All terms are odd.

Examples

			a(3) = 3: 123, 12|3, 3|12.
a(4) = 5: 1234, 124|3, 3|124, 12|34, 34|12.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, m!,
          add(b(n-1, max(m, j), 1-t), j=1..m+1-t))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, m_, t_]:=b[n, m, t]=If[n==0, m!, Sum[b[n - 1, Max[m, j], 1 - t], {j, m + 1 - t}]]; Table[b[n, 0, 0], {n, 0, 50}] (* Indranil Ghosh, Jul 30 2017 *)
  • PARI
    { A290384(n) = (n==0) + sum(m=0,n, sum(k=1,m+1, stirling(m,k-1,2)*(k-1)! * stirling(n-m,k,2)*k! * (-1)^(m+k+1))); } \\ Max Alekseyev, Sep 28 2021
    
  • PARI
    { A290384(n) = polcoef(1 + sum(k=1,n, (-1)^(k-1) / binomial(-1/x-1,k-1) / binomial(1/x-1,k) + O(x^(n+1)) ), n); } \\ Max Alekseyev, Sep 23 2021

Formula

For n>=1, a(n) = Sum_{m=0..n} Sum_{k=1..m+1} (-1)^(m+k+1) * S(m,k-1) * (k-1)! * S(n-m,k) * k! = Sum_{m=0..n} Sum_{k=1..m+1} (-1)^(m+k+1) * A019538(m,k-1) * A019538(n-m,k). - Max Alekseyev, Sep 28 2021
G.f.: 1 + Sum_{k >= 1} (-1)^(k-1) / binomial(-1/x-1,k-1) / binomial(1/x-1,k). - Max Alekseyev, Sep 23 2021

A293193 a(n) = n! * [x^n] exp(n*arctanh(x)).

Original entry on oeis.org

1, 1, 4, 33, 384, 5745, 105120, 2273985, 56770560, 1606455585, 50810457600, 1776342038625, 68018227200000, 2831056111508625, 127263741276672000, 6144722994699914625, 317153340121153536000, 17425813179911850338625, 1015487574490836615168000, 62559446107077837491198625
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2017

Keywords

Crossrefs

Cf. A000246.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n ArcTanh[x]], {x, 0, n}], {n, 0, 19}]
    Table[n! SeriesCoefficient[Exp[n Sum[x^(2 k + 1)/(2 k + 1), {k, 0, Infinity}]], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ phi^(5*n/2) * n^n / (5^(1/4) * exp(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 02 2017

A296789 Expansion of e.g.f. exp(x*arctanh(x)) (even powers only).

Original entry on oeis.org

1, 2, 20, 504, 24464, 1959840, 234852672, 39370660224, 8799246209280, 2528787321598464, 908585701684024320, 399070678264750356480, 210373049449102957645824, 131083661069772517440921600, 95304505860052894815543705600, 79961055068441273887848131297280
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Examples

			exp(x*arctanh(x)) = 1 + 2*x^2/2! + 20*x^4/4! + 504*x^6/6! + 24464*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[x ArcTanh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    nmax = 15; Table[(CoefficientList[Series[Exp[x (Log[1 + x] - Log[1 - x])/2], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*arctanh(x)).
a(n) ~ 2^(2*n + 2) * n^(2*n) / exp(2*n). - Vaclav Kotesovec, Dec 21 2017

A304001 Number of permutations of [n] whose up-down signature has a nonnegative total sum.

Original entry on oeis.org

1, 1, 1, 5, 12, 93, 360, 3728, 20160, 259535, 1814400, 27820524, 239500800, 4251096402, 43589145600, 877606592736, 10461394944000, 235288904377275, 3201186852864000, 79476406782222500, 1216451004088320000, 33020655481590446318, 562000363888803840000
Offset: 0

Views

Author

Alois P. Heinz, May 04 2018

Keywords

Comments

The up-down signature has (+1) for each ascent and (-1) for each descent.

Crossrefs

Bisections give: A002674 (even part), A179457(2n+1,n+1) (odd part).
Cf. A000246 (for nonnegative partial sums), A006551 (total sums are 0 or 1), A008292, A303287.

Programs

  • Maple
    b:= proc(u, o, t) option remember; (n->
         `if`(t>=n, n!, `if`(t<-n, 0,
          add(b(u-j, o+j-1, t-1), j=1..u)+
          add(b(u+j-1, o-j, t+1), j=1..o))))(u+o)
        end:
    a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 0), j=1..n)):
    seq(a(n), n=0..25);
    # second Maple program:
    a:= n-> `if`(irem(n, 2, 'r')=0, ceil(n!/2),
             add(combinat[eulerian1](n, j), j=0..r)):
    seq(a(n), n=0..25);
  • Mathematica
    Eulerian1[n_, k_] := If[k == 0, 1, If[n == 0, 0, Sum[(-1)^j (k - j + 1)^n Binomial[n + 1, j], {j, 0, k + 1}]]];
    a[n_] := Module[{r, m}, {r, m} = QuotientRemainder[n, 2]; If[m == 0, Ceiling[n!/2], Sum[Eulerian1[n, j], {j, 0, r}]]];
    a /@ Range[0, 25] (* Jean-François Alcover, Mar 26 2021, after 2nd Maple program *)

A317618 Expansion of e.g.f. sqrt((1 - x)/(1 - 3*x)).

Original entry on oeis.org

1, 1, 5, 39, 417, 5685, 94365, 1847475, 41686785, 1065288105, 30411314325, 959236098975, 33129890726625, 1243507150410525, 50401090111697325, 2193907232242600875, 102075654396429338625, 5055304328553234380625, 265522264682686831945125, 14742355948224269570580375
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2018

Keywords

Comments

Lah transform of A001147.

Crossrefs

Programs

  • Maple
    a:=series(sqrt((1 - x)/(1 - 3*x)), x=0, 20): seq(n!*coeff(a, x, n), n=0..19); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 19; CoefficientList[Series[Sqrt[(1 - x)/(1 - 3*x)], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n - 1, k - 1] (2 k - 1)!! n!/k!, {k, 0, n}], {n, 0, 19}]
    Join[{1}, Table[n! Hypergeometric2F1[3/2, 1 - n, 2, -2], {n, 19}]]
  • PARI
    my(x='x + O('x^25)); Vec(serlaplace(sqrt((1 - x)/(1 - 3*x)))) \\ Michel Marcus, Mar 26 2019

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1)*(2*k-1)!!*n!/k!.
a(n) ~ 2 * 3^(n - 1/2) * n^n / exp(n). - Vaclav Kotesovec, Mar 26 2019
D-finite with recurrence: (3*n^2 + 3*n)*a(n) + (-5 - 4*n)*a(n + 1) + a(n + 2)=0. - Robert Israel, Mar 26 2019
Previous Showing 31-40 of 47 results. Next