cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 94 results. Next

A069731 Number of unicursal planar maps with n edges rooted at a vertex of odd valency (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

1, 5, 28, 168, 1056, 6864, 45760, 311168, 2149888, 15049216, 106502144, 760729600, 5477253120, 39710085120, 289650032640, 2124100239360, 15651264921600, 115819360419840, 860372391690240
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Maple
    Z:=-(1-4*z-sqrt(1-4*z))/sqrt(1-4*z)/64: Zser:=series(Z, z=0, 32): seq(coeff(Zser*2^(n+1), z, n), n=3..24); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Table[2^(n-2) CatalanNumber[n+1], {n, 1, 19}] (* Jean-François Alcover, Aug 28 2019 *)

Formula

a(n) = 2^(n-2)*C_(n+1), where C_n stands for the Catalan numbers (A000108).
a(n) = A003645(n+2)/4.
D-finite with recurrence: 4*(2*n+1)*a(n-1) - (n+2)*a(n) = 0, a(1) = 1. - Georg Fischer, May 23 2021
From Peter Bala, Apr 29 2024: (Start)
a(n) = Sum_{k = 0..n} binomial(n, 2*k)*Catalan(k)*4^(n-k-1).
O.g.f.: A(x) = (1 - 4*x - 8*x^2 - sqrt(1 - 8*x))/(32*x^2).
A(x) = series reversion of x*c(-x)/(1 + 4*x), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and c(-x)/(1 + 4*x) is the g.f. of (-1)^n*A000346(n). (End)

A187926 Riordan matrix (1/(1-4x),(1-sqrt(1-4x))/2).

Original entry on oeis.org

1, 4, 1, 16, 5, 1, 64, 22, 6, 1, 256, 93, 29, 7, 1, 1024, 386, 130, 37, 8, 1, 4096, 1586, 562, 176, 46, 9, 1, 16384, 6476, 2380, 794, 232, 56, 10, 1, 65536, 26333, 9949, 3473, 1093, 299, 67, 11, 1, 262144, 106762, 41226, 14893, 4944, 1471, 378, 79, 12, 1, 1048576, 431910, 169766, 63004, 21778, 6885, 1941, 470, 92, 13, 1
Offset: 0

Views

Author

Emanuele Munarini, Mar 16 2011

Keywords

Comments

Row sums are A000346.

Examples

			Triangle begins:
1,
4,1,
16,5,1,
64,22,6,1,
256,93,29,7,1,
1024,386,130,37,8,1,
4096,1586,562,176,46,9,1,
16384,6476,2380,794,232,56,10,1,
65536,26333,9949,3473,1093,299,67,11,1
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + i, n]2^(n - k - i), {i, 0, n - k}], {n, 0, 8}, {k, 0, 8}]//MatrixForm
  • Maxima
    create_list(sum(binomial(n+i,n)*2^(n-k-i),i,0,n-k),n,0,10,k,0,n);

Formula

a(n,k) = sum(binomial(n+i,n)*2^(n-k-i),i=0..n-k)
Recurrence: a(n+1,k+1) = a(n,k) + a(n,k+1) + a(n,k+2) + ... + a(n,n).

A296771 Row sums of A050157.

Original entry on oeis.org

1, 3, 13, 58, 257, 1126, 4882, 20980, 89497, 379438, 1600406, 6720748, 28117498, 117254268, 487589572, 2022568168, 8371423177, 34581780478, 142605399982, 587138954428, 2413944555742, 9911778919348, 40650232625212, 166534680737368, 681576405563722
Offset: 0

Views

Author

Peter Luschny, Dec 21 2017

Keywords

Crossrefs

Programs

  • Maple
    A296771 := n -> add(binomial(2*n, n) - binomial(2*n, n+k+1), k=0..n):
    seq(A296771(n), n=0..24);
  • Mathematica
    a[n_] := 4^n ((n - 1/2)! (2 n + 3)/(2 Sqrt[Pi] n!) - 1/2);
    Table[a[n], {n, 0, 24}]
  • PARI
    a(n) = sum(k=0, n, binomial(2*n, n) - binomial(2*n, n+k+1)) \\ Iain Fox, Dec 21 2017

Formula

a(n) = Sum_{k=0..n} (binomial(2*n, n) - binomial(2*n, n+k+1)).
a(n) = 2^(2*n-1)*(((n-1/2)!*(2*n+3))/(sqrt(Pi)*n!) - 1).
a(n) ~ 4^n*(sqrt(n/Pi) - 1/2).
a(n) = A037965(n+1) - A000346(n-1) for n >= 1.
From Robert Israel, Dec 21 2017: (Start)
a(n) = (n+3/2)*binomial(2*n,n) - 2^(2*n-1).
G.f.: (3/2-4*x)*(1-4*x)^(-3/2) - (1/2)*(1-4*x)^(-1).
64*(n+1)*(2*n+1)*a(n)-8*(2*n+3)*(5*n+4)*a(n+1)+2*(n+2)*(8*n+11)*a(n+2)-(n+3)*(n+2)*a(n+3)=0. (End)

A303602 a(n) = Sum_{k = 0..n} k*binomial(2*n+1, k).

Original entry on oeis.org

0, 3, 25, 154, 837, 4246, 20618, 97140, 447661, 2028478, 9070110, 40122028, 175913250, 765561564, 3310623412, 14238676712, 60949133949, 259809601870, 1103420316566, 4670886541308, 19714134528598, 82985455688276, 348481959315660, 1460179866076504, 6106070639175122
Offset: 0

Views

Author

Bruno Berselli, May 09 2018

Keywords

Comments

Second bisection of A185251; the first bisection is A002699.
The terms are not congruent to 5 (mod 6).

Crossrefs

Programs

  • Maple
    seq(add(k*binomial(2*n+1,k),k=0..n),n=0..24); # Paolo P. Lava, May 10 2018
  • Mathematica
    Table[Sum[k Binomial[2 n + 1, k], {k, 0, n}], {n, 0, 30}]
    CoefficientList[Series[(1 + 4*x - Sqrt[1 - 4*x]) / (2*(1 - 4*x)^2), {x, 0, 25}], x] (* Vaclav Kotesovec, May 10 2018 *)
  • PARI
    a(n)=(2*n+1)*(4^n-binomial(2*n,n))/2 \\ Charles R Greathouse IV, Oct 23 2023
  • Sage
    [(2*n+1)*(4^n-binomial(2*n,n))/2 for n in (0..30)]
    

Formula

E.g.f.: ((1 + 8*x)*exp(2*x) - (1 + 4*x)*I_0(2*x) - 4*x*I_1(2*x))*exp(2*x)/2, where I_m(.) is the modified Bessel function of the first kind.
From Vaclav Kotesovec, May 10 2018: (Start)
G.f.: (1 + 4*x - sqrt(1 - 4*x)) / (2*(1 - 4*x)^2).
D-finite with recurrence: n*(2*n-1)*a(n) = 2*(2*n+1)*(4*n-3)*a(n-1) - 8*(2*n-1)*(2*n+1)*a(n-2). (End)
a(n) = (2*n + 1)*(4^n - binomial(2*n, n))/2.
a(n+1) - 4*a(n) = A164991(2*n+3).

A038602 One half of convolution of central binomial coefficients A000984(n) with A000984(n+2), n >= 0.

Original entry on oeis.org

3, 16, 73, 316, 1334, 5552, 22901, 93892, 383290, 1559680, 6331098, 25649976, 103758828, 419195552, 1691825933, 6822051092, 27488564498, 110691186272, 445487285678, 1792047789512, 7205785665908, 28963557761312
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A000346 with Catalan numbers but with C(0)=1 replaced by 3

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x)*((1-Sqrt[1-4*x])/(2*x)+2)/(1-4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 28 2014 *)

Formula

a(n) = 2^(2*n+3)-(3*n+5)*C(n+1), C(n): Catalan numbers A000108.
G.f.: c(x)*(c(x)+2)/(1-4*x), where c(x) is G.f. for Catalan numbers.
a(n) ~ 2^(2*n+3) * (1-3/(2*sqrt(Pi*n))). - Vaclav Kotesovec, Mar 28 2014
Recurrence: n*(n+2)*a(n) = 2*(4*n^2 + 5*n - 1)*a(n-1) - 8*(n+1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Mar 28 2014

A058893 Triangle arising in enumeration of maps on projective plane.

Original entry on oeis.org

1, 5, 9, 22, 112, 118, 93, 899, 2346, 1773, 386, 5940, 27446, 48426, 28650, 1586, 35138, 247752, 745180, 995290, 484578
Offset: 1

Views

Author

N. J. A. Sloane, Jan 08 2001

Keywords

Examples

			Triangle starts:
1;
5,9;
22,112,118;
93,899,2346,1773;
...
		

Crossrefs

A000346 is first column.

A118447 Number of rooted n-edge one-vertex maps on the Klein bottle (dually: one-face maps).

Original entry on oeis.org

4, 42, 304, 1870, 10488, 55412, 280768, 1379286, 6616360, 31144300, 144367584, 660746892, 2991902704, 13424189160, 59758420736, 264191654758, 1160934273288, 5074150057916, 22071747625120, 95596117130724
Offset: 2

Views

Author

Valery A. Liskovets, May 04 2006

Keywords

Comments

One-vertex maps on the projective plane are counted by A000346 and one-vertex maps on a non-orientable genus-3 surface by A118448. Such maps are also called bouquets of loops (and their duals are called unicellular maps).

References

  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.

Programs

  • Mathematica
    ((R - 1)^2 (R + 1) (R + 3)/(8 R^5) /. R -> Sqrt[1 - 4x]) + O[x]^22 // CoefficientList[#, x]& // Drop[#, 2]& (* Jean-François Alcover, Aug 28 2019 *)

Formula

O.g.f.: (R-1)^2(R+1)(R+3)/8R^5, where R=sqrt(1-4x).
Conjecture: -(n-2)*(n-1)^2*a(n) +2*n*(4*n-5)*(n-2)*a(n-1) -8*n*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jun 22 2016
a(n) ~ n^(3/2) * 2^(2*n-1) / sqrt(Pi) * (1 - sqrt(Pi/n)/2). - Vaclav Kotesovec, Aug 28 2019

A225419 Triangle read by rows: T(n,k) (0 <= k <= n) = binomial(2*n+2,k).

Original entry on oeis.org

1, 1, 4, 1, 6, 15, 1, 8, 28, 56, 1, 10, 45, 120, 210, 1, 12, 66, 220, 495, 792, 1, 14, 91, 364, 1001, 2002, 3003, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 1, 18, 153, 816, 3060, 8568, 18564, 31824, 43758, 1, 20, 190
Offset: 0

Views

Author

Roger L. Bagula, May 07 2013

Keywords

Comments

Row sums are A000346.

Examples

			Triangle begins:
1,
1, 4,
1, 6, 15,
1, 8, 28, 56,
1, 10, 45, 120, 210,
1, 12, 66, 220, 495, 792,
1, 14, 91, 364, 1001, 2002, 3003,
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Table[DifferenceRoot[Function[{y, n}, {(-(2*m + 1) + n) y[n] + n y[1 + n] == 0, y[1] == 1}]][k], {k, 1, m}], {m, 1, 10}]]
    Flatten[Table[Binomial[2n+2,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Apr 13 2014 *)

Extensions

Edited by N. J. A. Sloane, May 11 2013

A271453 Triangle read by rows of coefficients of polynomials C_n(x) = Sum_{k=0..n} (2*k)!*(x - 1)^(n-k)/((k + 1)!*k!).

Original entry on oeis.org

1, 0, 1, 2, -1, 1, 3, 3, -2, 1, 11, 0, 5, -3, 1, 31, 11, -5, 8, -4, 1, 101, 20, 16, -13, 12, -5, 1, 328, 81, 4, 29, -25, 17, -6, 1, 1102, 247, 77, -25, 54, -42, 23, -7, 1, 3760, 855, 170, 102, -79, 96, -65, 30, -8, 1, 13036, 2905, 685, 68, 181, -175, 161, -95, 38, -9, 1, 45750, 10131, 2220, 617, -113, 356, -336, 256, -133, 47, -10, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

The polynomials C_n(x) have generating function G(x,t) = (1 - sqrt(1 - 4*t))/(2*t*(1 + t - x*t)) = 1 + x*t + (x^2 - x + 2)*t^2 + (x^3 - 2*x^2 + 3*x + 3)*t^3 + ...
C_n(x) can be defined by the recurrence relation C_n(x) = (x - 1)*C_(n-1)(x) + (2n)!/((n + 1)!*n!), C_0(x) = 1 or the equivalent form C_n(x) = (x - 1)*C_(n-1)(x) + C_n(1), C_0(x) = 1.
C_n(x) can be defined as convolution of Catalan numbers and powers of (x - 1).
Discriminants of C_n(x) gives the sequence: 1, 1, -7, -543, 533489, 7080307052, -1318026434480736, -3526797951451513832247, 137992774365121594001729513153, ...
C_n(0) = A032357(n).
C_n(1) = C_n(x) - (x - 1)*C_(n-1)(x) = A000108(n).
C_n(2) = Sum_{m=0..n} C_1(m) = A014137(n).
C_n(3) = A014318(n).
C_n(5) = A000346(n).
C_n(6) = A046714(n).

Examples

			Triangle begins:
   1;
   0,  1;
   2, -1,  1;
   3,  3, -2,  1;
  11,  0,  5, -3,  1;
  31, 11, -5,  8, -4,  1;
  ...
The first few polynomials are:
  C_0(x) = 1;
  C_1(x) = x;
  C_2(x) = x^2 -   x   + 2;
  C_3(x) = x^3 - 2*x^2 + 3*x   + 3;
  C_4(x) = x^4 - 3*x^3 + 5*x^2         + 11;
  C_5(x) = x^5 - 4*x^4 + 8*x^3 - 5*x^2 + 11*x + 31;
  ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[RecurrenceTable[{c[0] == 1, c[n] == (x - 1) c[n - 1] + CatalanNumber[n]}, c, {n, 11}], x]
    T[n_, n_]:= 1; T[n_, 0]:= (-1)^n*Sum[CatalanNumber[k]*(-1)^k, {k, 0, n}]; T[n_, k_]:= T[n - 1, k - 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 04 2018 *)
  • PARI
    {T(n, k) = if(k==n, 1, if(k==0, sum(j=0,n, (-1)^(n-j)*(2*j)!/(j!*(j+1)!)), T(n-1, k-1) - T(n-1, k))) };
    for(n=0, 10, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 04 2018

Formula

For triangle: T(n,n)=1, T(n,0) = Sum_{k=0..n} (-1)^(n-k)*(2*k)!/(k! * (k+1)!), T(n, k) = T(n-1, k-1) - T(n-1, k). - G. C. Greubel, Nov 04 2018

A306609 a(n) = Sum_{k=0..n} k*binomial(4*n+2,2*k).

Original entry on oeis.org

0, 15, 465, 11102, 236997, 4751010, 91474890, 1712391420, 31398038701, 566621243642, 10097483539038, 178113001428004, 3115342162844450, 54103694774702292, 933929099838928692, 16037182307150776056, 274132978890654857853, 4667160114821964359530, 79177297937966956038102, 1338972240005810710258452
Offset: 0

Views

Author

Robert Israel, Feb 28 2019

Keywords

Crossrefs

Cf. A000346.

Programs

  • GAP
    List([0..30],n->Sum([0..n],k->k*Binomial(4*n+2,2*k))); # Muniru A Asiru, Mar 01 2019
  • Maple
    f:= n -> (n+1/2)*(16^n-binomial(4*n,2*n)):
    map(f, [$0..30]);
  • Mathematica
    Table[Sum[k Binomial[4n+2,2k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jun 14 2024 *)

Formula

a(n) = (n+1/2)*(16^n - binomial(4*n,2*n)) = (2*n+1)*A000346(2*n-1).
-512*(4*n + 1)*(86*n + 213)*(3 + 4*n)*(n + 1)*a(n) + 32*(2336*n^4 + 8800*n^3 + 10524*n^2 + 11540*n + 9703)*a(n + 1) - 2*(n + 2)*(544*n^3 - 1072*n^2 + 1138*n + 8055)*a(n + 2) - (2*n + 5)*(26*n - 31)*(n + 3)*(n + 2)*a(n + 3) = 0.
a(n) ~ 16^n * (n - sqrt(n/(2*Pi)) + 1/2).
Previous Showing 81-90 of 94 results. Next