cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 161 results. Next

A306462 Number of ways to write n as C(2w,2) + C(x+2,3) + C(y+3,4) + C(z+4,5), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!), w is a positive integer and x,y,z are nonnegative integers.

Original entry on oeis.org

1, 3, 3, 1, 1, 4, 7, 6, 2, 2, 6, 8, 5, 1, 2, 9, 11, 5, 1, 4, 9, 12, 7, 2, 4, 10, 12, 7, 4, 6, 10, 11, 6, 5, 5, 10, 15, 8, 4, 7, 11, 14, 9, 4, 5, 11, 14, 6, 6, 10, 15, 12, 5, 7, 8, 11, 14, 7, 5, 6, 11, 14, 12, 11, 6, 11, 15, 12, 7, 9, 18, 21, 12, 5, 5, 15, 19, 11, 3, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 17 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 4, 5, 14, 19.
We have verified a(n) > 0 for all n = 1..5*10^6.
See also A306471 and A306477 for similar conjectures.

Examples

			a(1) = 1 with 1 = C(2,2) + C(2,3) + C(3,4) + C(4,5).
a(4) = 1 with 4 = C(2,2) + C(3,3) + C(4,4) + C(5,5).
a(5) = 1 with 5 = C(2,2) + C(4,3) + C(3,4) + C(4,5).
a(14) = 1 with 14 = C(4,2) + C(3,3) + C(4,4) + C(6,5).
a(19) = 1 with 19 = C(6,2) + C(4,3) + C(3,4) + C(4,5).
		

Crossrefs

Programs

  • Mathematica
    f[m_,n_]:=f[m,n]=Binomial[m+n-1,m];
    HQ[n_]:=HQ[n]=IntegerQ[Sqrt[8n+1]]&&Mod[Sqrt[8n+1],4]==3;
    tab={};Do[r=0;Do[If[f[5,z]>=n,Goto[cc]];Do[If[f[4,y]>=n-f[5,z],Goto[bb]];Do[If[f[3,x]>=n-f[5,z]-f[4,y],Goto[aa]];If[HQ[n-f[5,z]-f[4,y]-f[3,x]],r=r+1],{x,0,n-1-f[5,z]-f[4,y]}];Label[aa],{y,0,n-1-f[5,z]}];Label[bb],{z,0,n-1}];Label[cc];tab=Append[tab,r],{n,1,80}];Print[tab]

A306471 Number of ways to write n as C(2w+1,2) + C(x+2,3) + C(y+3,4) + C(z+4,5) with w,x,y,z nonnegative integers, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).

Original entry on oeis.org

1, 3, 3, 2, 4, 6, 5, 4, 4, 5, 7, 8, 6, 4, 5, 8, 8, 5, 4, 6, 7, 10, 10, 6, 6, 12, 13, 8, 7, 7, 6, 11, 9, 4, 3, 8, 16, 12, 8, 9, 9, 13, 14, 10, 7, 9, 18, 12, 6, 5, 4, 11, 10, 4, 2, 5, 19, 21, 11, 9, 13, 20, 16, 9, 6, 8, 17, 17, 4, 2, 9, 20, 17, 6, 9, 9, 15, 23, 14, 9, 15
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 17 2019

Keywords

Comments

Conjecture 1: a(n) > 1 for all n > 0.
We have verified a(n) > 0 for all n = 0..5*10^6.
Conjecture 2: For each r = 0, 1, any positive integer can be written as w^2 + C(x,3) + C(y,4) + C(z,5), where w,x,y,z are nonnegative integers with w - r even.
See also A306462 and A306477 for similar conjectures.

Examples

			a(0) = 1 with 0 = C(1,2) + C(2,3) + C(3,4) + C(4,5).
a(3) = 2 with 3 = C(3,2) + C(2,3) + C(3,4) + C(4,5) = C(1,2) + C(3,3) + C(4,4) + C(5,5).
a(54) = 2 with 54 = C(3,2) + C(7,3) + C(6,4) + C(5,5) = C(3,2) + C(5,3) + C(7,4) + C(6,5).
a(69) = 1 with 69 = C(3,2) + C(5,3) + C(7,4) + C(7,5) = C(3,2) + C(5,3) + C(3,4) + C(8,5).
		

Crossrefs

Programs

  • Mathematica
    f[m_,n_]:=f[m,n]=Binomial[m+n-1,m];
    HQ[n_]:=HQ[n]=IntegerQ[Sqrt[8n+1]]&&Mod[Sqrt[8n+1],4]==1;
    tab={};Do[r=0;Do[If[f[5,z]>n,Goto[cc]];Do[If[f[4,y]>n-f[5,z],Goto[bb]];Do[If[f[3,x]>n-f[5,z]-f[4,y],Goto[aa]];If[HQ[n-f[5,z]-f[4,y]-f[3,x]],r=r+1],{x,0,n-f[5,z]-f[4,y]}];Label[aa],{y,0,n-f[5,z]}];Label[bb],{z,0,n}];Label[cc];tab=Append[tab,r],{n,0,80}];Print[tab]

A323533 a(n) = Product_{k=1..n} (binomial(k-1,5) + binomial(n-k,5)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 790420571136, 100389735898841088, 14582663231533605863424, 2458550581659926554038239232, 529554691027323329170207744475136, 146980847512952623091566575072055001088, 53003014923687519392206631372837133989462016
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[k-1,5] + Binomial[n-k,5], {k, 1, n}], {n, 0, 20}]
  • PARI
    a(n) = prod(k=1, n, binomial(k-1,5) + binomial(n-k,5)); \\ Michel Marcus, Jan 17 2019

Formula

a(n) ~ exp((1 + 2*Pi*sqrt(5 - 2/sqrt(5))/5) * (n-5)) * n^(5*n) / (exp(5*n)*120^n).

A338981 Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.

Original entry on oeis.org

0, 1, 92307499707443390526727850063502, 124792381938502167392061689732085833655832902312754962, 122697712831831745940423467267565845711242845618544066030140191642464
Offset: 0

Views

Author

Robert A. Russell, Dec 13 2020

Keywords

Comments

Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>120, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is bp(20)/15 + bp(30)/10 + bp(40)/15 + bp(50)/12 + 43*bp(60)/300 + bp(66)/10 + bp(100)/360 + bp(104)/9 + bp(114)/12 + 13*bp(120)/300 + bp(150)/240 + bp(152)/8 + bp(200)/360 + bp(208)/36 + 61*bp(300)/14400 + bp(302)/32 + bp(330)/240 + bp(600)/14400.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is bp(24)/15 + bp(36)/10 + bp(48)/15 + bp(60)/12 + 7*bp(72)/300 + 3*bp(76)/25 + bp(84)/10 + 41*bp(120)/360 + bp(132)/12 + 7*bp(144)/300 + bp(152)/50 + bp(180)/240 + bp(182)/8 + 11*bp(240)/360 + 61*bp(360)/14400 + bp(364)/32 + bp(396)/240 + bp(720)/14400.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is bp(40)/15 + bp(60)/10 + bp(80)/15 + bp(100)/12 + 43*bp(120)/300 + bp(128)/10 + bp(200)/360 + bp(202)/9 + bp(216)/12 + 13*bp(240)/300 + bp(300)/240 + bp(302)/8 + bp(400)/360 + bp(404)/36 + 61*bp(600)/14400 + bp(604)/32 + bp(640)/240 + bp(1200)/14400.

Crossrefs

Cf. A338980 (oriented), A338982 (chiral), A338983 (achiral), A338965 (up to n colors), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338949 (24-cell).

Programs

  • Mathematica
    bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
    CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50+bp[17]/10+bp[19]/10+bp[20]/360+bp[22]/36+bp[23]/12+7bp[24]/300+bp[27]/12+bp[30]/240+bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400+bp[61]/240+bp[62]/32+bp[75]/240+bp[120]/14400,x]

Formula

A338965(n) = Sum_{j=1..Min(n,120)} a(n) * binomial(n,j).
a(n) = A338980(n) - A338982(n) = (A338980(n) + A338983(n)) / 2 = A338982(n) + A338983(n).
G.f.: bp(4)/15 + bp(6)/10 + bp(8)/15 + bp(10)/12 + 7bp(12)/300 + bp(16)/50 + bp(17)/10 + bp(19)/10 + bp(20)/360 + bp(22)/36 + bp(23)/12 + 7bp(24)/300 + bp(27)/12 + bp(30)/240 + bp(31)/8 + bp(32)/50 + bp(40)/360 + bp(44)/36 + bp(60)/14400 + bp(61)/240 + bp(62)/32 + bp(75)/240 + bp(120)/14400, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.

A338982 Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.

Original entry on oeis.org

0, 0, 92307499707128546879177569498768, 124792381938502167386992798774696507063550726794469211, 122697712831831745940423455373835049129541140194826165569091574960692
Offset: 0

Views

Author

Robert A. Russell, Dec 13 2020

Keywords

Comments

Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>120, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is bp(20)/15 + bp(30)/10 + bp(40)/15 + bp(50)/12 - 17*bp(60)/300 - bp(66)/10 + bp(100)/360 - bp(104)/18 - bp(114)/12 + 13*bp(120)/300 + bp(150)/240 - bp(152)/8 + bp(200)/360 + bp(208)/36 - 59*bp(300)/14400 + bp(302)/32 - bp(330)/240 + bp(600)/14400.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is bp(24)/15 + bp(36)/10 + bp(48)/15 + bp(60)/12 + 7*bp(72)/300 - 2*bp(76)/25 - bp(84)/10 - 19*bp(120)/360 - bp(132)/12 + 7*bp(144)/300 + bp(152)/50 + bp(180)/240 - bp(182)/8 + 11*bp(240)/360 - 59*bp(360)/14400 + bp(364)/32 - bp(396)/240 + bp(720)/14400.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is bp(40)/15 + bp(60)/10 + bp(80)/15 + bp(100)/12 - 17*bp(120)/300 - bp(128)/10 + bp(200)/360 - bp(202)/18 - bp(216)/12 + 13*bp(240)/300 + bp(300)/240 - bp(302)/8 + bp(400)/360 + bp(404)/36 - 59*bp(600)/14400 + bp(604)/32 - bp(640)/240 + bp(1200)/14400.

Crossrefs

Cf. A338980 (oriented), A338981 (unoriented), A338983 (achiral), A338966 (up to n colors), A000389 (5-cell), A337954 (8-cell vertices, 16-cell facets), A234249 (16-cell vertices, 8-cell facets), A338950 (24-cell).

Programs

  • Mathematica
    bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
    CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50-bp[17]/10-bp[19]/10+bp[20]/360+bp[22]/36-bp[23]/12+7bp[24]/300-bp[27]/12+bp[30]/240-bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400-bp[61]/240+bp[62]/32-bp[75]/240+bp[120]/14400,x]

Formula

A338966(n) = Sum_{j=2..Min(n,120)} a(n) * binomial(n,j).
a(n) = A338980(n) - A338981(n) = (A338980(n) - A338983(n)) / 2 = A338981(n) - A338983(n).
G.f.: bp(4)/15 + bp(6)/10 + bp(8)/15 + bp(10)/12 + 7*bp(12)/300 + bp(16)/50 - bp(17)/10 - bp(19)/10 + bp(20)/360 + bp(22)/36 - bp(23)/12 + 7*bp(24)/300 - bp(27)/12 + bp(30)/240 - bp(31)/8 + bp(32)/50 + bp(40)/360 + bp(44)/36 + bp(60)/14400 - bp(61)/240 + bp(62)/32 - bp(75)/240 + bp(120)/14400, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.

A369794 Expansion of 1/(1 - x^5/(1-x)^6).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 6, 21, 56, 126, 253, 474, 870, 1651, 3367, 7372, 16762, 38183, 85290, 185573, 394555, 826752, 1724816, 3613968, 7642004, 16313856, 35052905, 75487110, 162349105, 348018300, 743376838, 1583718457, 3370144462, 7173308802, 15285181447
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 6*n-5 into parts 5 and 6.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^5/(1-x)^6))

Formula

a(n) = A107025(n)-A107025(n-1). First differences of A107025.
a(n) = A017837(6*n-5) = Sum_{k=0..floor((6*n-5)/5)} binomial(k,6*n-5-5*k) for n > 0.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 7*a(n-5) - a(n-6) for n > 6.
a(n) = Sum_{k=0..floor(n/5)} binomial(n-1+k,n-5*k).

A133084 A007318 * A133080.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 4, 1, 5, 4, 10, 4, 1, 6, 5, 20, 10, 6, 1, 7, 6, 35, 20, 21, 6, 1, 8, 7, 56, 35, 56, 21, 8, 1, 9, 8, 84, 56, 126, 56, 36, 8, 1, 10, 9, 120, 84, 252, 126, 120, 36, 10, 1, 11, 10, 165, 120, 462, 252, 330, 120, 55, 10, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 16 2007

Keywords

Comments

Row sums = A003945: (1, 3, 6, 12, 24, 48, 96, ...).
A133084 is jointly generated with A133567 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+(x+1)*v(n-1)x and v(n,x)=x*u(n-1,x)+v(n-1,x)+1. See the Mathematica section. - Clark Kimberling, Feb 28 2012

Examples

			First few rows of the triangle:
  1;
  2,  1;
  3,  2,  1;
  4,  3,  4,  1;
  5,  4, 10,  4,  1;
  6,  5, 20, 10,  6,  1;
  7,  6, 35, 20, 21,  6,  1;
  ...
		

Crossrefs

Cf. A000292 (column 3 and 4), A000389 (column 5 and 6), A000580 (column 7).

Programs

  • Magma
    /* As triangle */ [[(1-(1+(-1)^k)/2 )*Binomial(n, k)+((1+(-1)^k)/2)*Binomial(n-1, k-1): k in [1..n]]: n in [1.. 11]]; // Vincenzo Librandi, Oct 21 2017
  • Maple
    A133084 := proc(n,k)
        add(binomial(n-1,i-1)*A133080(i,k),i=1..n) ;
    end proc: # R. J. Mathar, Jun 13 2025
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A133567 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A133084 *)
    (* Clark Kimberling, Feb 28 2012 *)
    T[n_, k_] := If[k == n, 1, (1  - (1 + (-1)^k)/2 )*Binomial[n, k] + ((1 + (-1)^k)/2)*Binomial[n - 1, k - 1]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, Oct 21 2017 *)
  • PARI
    for(n=1,10, for(k=1,n, print1(if(k == n, 1, (1  - (1 + (-1)^k)/2 )*binomial(n, k) + ((1 + (-1)^k)/2)*binomial(n - 1, k - 1)), ", "))) \\ G. C. Greubel, Oct 21 2017
    

Formula

Binomial transform of triangle A133080.

A140404 a(n) = binomial(n+5, 5)*7^n.

Original entry on oeis.org

1, 42, 1029, 19208, 302526, 4235364, 54353838, 652246056, 7419298887, 80787921214, 848273172747, 8636963213424, 85649885199788, 830145041167176, 7886377891088172, 73606193650156272, 676256904160810749, 6126091955339109138, 54794489156088698401, 484498640959100070072
Offset: 0

Views

Author

Zerinvary Lajos, Jun 16 2008

Keywords

Comments

With a different offset, number of n-permutations of 8 objects:r,s,t,u,v,z,x,y with repetition allowed, containing exactly five (5) u's. Example: a(1)=42 because we have
uuuuur, uuuuru, uuuruu, uuruuu, uruuuu, ruuuuu
uuuuus, uuuusu, uuusuu, uusuuu, usuuuu, suuuuu,
uuuuut, uuuutu, uuutuu, uutuuu, utuuuu, tuuuuu,
uuuuuv, uuuuvu, uuuvuu, uuvuuu, uvuuuu, vuuuuu,
uuuuuz, uuuuzu, uuuzuu, uuzuuu, uzuuuu, zuuuuu,
uuuuux, uuuuxu, uuuxuu, uuxuuu, uxuuuu, xuuuuu,
uuuuuy, uuuuyu, uuuyuu, uuyuuu, uyuuuu, yuuuuu.

Crossrefs

Programs

  • Magma
    [7^n* Binomial(n+5, 5): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
    
  • Maple
    seq(binomial(n+5,5)*7^n,n=0..17);
  • Mathematica
    Table[Binomial[n+5,5]7^n,{n,0,20}] (* or *) LinearRecurrence[ {42,-735,6860,-36015,100842,-117649},{1,42,1029,19208,302526,4235364},21] (* Harvey P. Dale, Sep 08 2011 *)
  • PARI
    a(n)=binomial(n+5,5)*7^n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 1/(1-7*x)^6. - Zerinvary Lajos, Aug 06 2008
a(n) = 42*a(n-1) - 735*a(n-2) + 6860*a(n-3) - 36015*a(n-4) + 100842*a(n-5) - 117649*a(n-6). - Harvey P. Dale, Sep 08 2011
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 45360*log(7/6) - 27965/4.
Sum_{n>=0} (-1)^n/a(n) = 143360*log(8/7) - 229705/12. (End)

A185876 Fourth accumulation array of A051340, by antidiagonals.

Original entry on oeis.org

1, 5, 6, 15, 29, 21, 35, 85, 99, 56, 70, 195, 285, 259, 126, 126, 385, 645, 735, 574, 252, 210, 686, 1260, 1645, 1610, 1134, 462, 330, 1134, 2226, 3185, 3570, 3150, 2058, 792, 495, 1770, 3654, 5586, 6860, 6930, 5670, 3498, 1287, 715, 2640, 5670, 9114, 11956, 13230, 12390, 9570, 5643, 2002, 1001, 3795, 8415, 14070
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain A051340 < A141419 < A185874 < A185875 < A185876 < ... (See A144112 for the definition of accumulation array.)

Examples

			Northwest corner:
   1,   5,  15,   35,   70
   6,  29,  85,  195,  385
  21,  99, 285,  645, 1260
  56, 259, 735, 1645, 3185
		

Crossrefs

Row 1: A000332, column 1: A000389.

Programs

  • Mathematica
    f[n_,k_]:=k(1+k)n(1+n)(2+n)(5+4k+3n)/144;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185875 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    Factor[s[n,k]]  (* formula for A185876 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185876 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = (4*n+5*k+11)*C(k+2,3)*C(n+4,4)/20, k>=1, n>=1.

A293615 a(n) = Pochhammer(n, 5) / 2.

Original entry on oeis.org

0, 60, 360, 1260, 3360, 7560, 15120, 27720, 47520, 77220, 120120, 180180, 262080, 371280, 514080, 697680, 930240, 1220940, 1580040, 2018940, 2550240, 3187800, 3946800, 4843800, 5896800, 7125300, 8550360, 10194660, 12082560, 14240160, 16695360, 19477920, 22619520
Offset: 0

Views

Author

Peter Luschny, Oct 20 2017

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [Factorial(n+4)/(2*Factorial(n-1)): n in [1..30]]; // G. C. Greubel, Nov 20 2017
    
  • Maple
    A293615 := n -> pochhammer(n, 5)/2:
    seq(A293615(n), n=0..11);
  • Mathematica
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 60, 360, 1260, 3360, 7560}, 32]
    Table[Pochhammer[n, 5]/2, {n,0,50}] (* G. C. Greubel, Nov 20 2017 *)
  • PARI
    for(n=0,30, print1(n*(n+1)*(n+2)*stirling(4 + n, 3 + n, 2), ", ")) \\ G. C. Greubel, Nov 20 2017
    
  • PARI
    concat(0, Vec(60*x / (1 - x)^6 + O(x^40))) \\ Colin Barker, Nov 21 2017

Formula

a(n) = n*(n+1)*(n+2)*Stirling2(4 + n, 3 + n).
-a(-n-4) = a(n) for n >= 0.
a(n) = 60*A000389(n+4). - G. C. Greubel, Nov 20 2017
From Colin Barker, Nov 21 2017: (Start)
G.f.: 60*x / (1 - x)^6.
a(n) = (1/2)*(n*(1 + n)*(2 + n)*(3 + n)*(4 + n)).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. (End)
From Amiram Eldar, Aug 31 2025: (Start)
Sum_{n>=1} 1/a(n) = 1/48.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/3 - 131/144. (End)
Previous Showing 91-100 of 161 results. Next