cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 104 results. Next

A154777 Numbers of the form x^2 + 2*y^2 with positive integers x and y.

Original entry on oeis.org

3, 6, 9, 11, 12, 17, 18, 19, 22, 24, 27, 33, 34, 36, 38, 41, 43, 44, 48, 51, 54, 57, 59, 66, 67, 68, 72, 73, 75, 76, 81, 82, 83, 86, 88, 89, 96, 97, 99, 102, 107, 108, 113, 114, 118, 121, 123, 129, 131, 132, 134, 136, 137, 139, 144, 146, 147, 150, 152, 153, 162, 163
Offset: 1

Views

Author

M. F. Hasler, Jan 24 2009

Keywords

Comments

Subsequence of A002479 (which allows for x=0 and/or y=0). See there for further references. See A155560 cf for intersection of sequences of type (x^2 + k*y^2).
Also, subsequence of A000408 (with 2*y^2 = y^2 + z^2).
If m and n are terms also n*m is (in particular any power of term is also a term). - Zak Seidov, Nov 30 2011
If m is a term, 2*m is also. - Zak Seidov, Nov 30 2011
Select terms that are multiples of 25: 75, 150, 225, 275, 300, 425, 450, 475, 550, 600, 675, 825, 850, 900, 950, 1025, 1075, 1100, ... Divide them by 25: 3, 6, 9, 11, 12, 17, 18, 19, 22, 24, 27, 33, 34, 36, 38, 41, 43, 44, 48, 51, 54, 57, 59, 66, 67, 68, 72, ... and we get the original sequence. - Zak Seidov, Dec 01 2011
This sequence is closed under multiplication because A002479 is. - Jerzy R Borysowicz, Jun 13 2020

Examples

			a(1) = 3 = 1^2 + 2*1^2 is the least number that can be written as A + 2B where A, B are positive squares.
a(2) = 6 = 2^2 + 2*1^2 is the second smallest number that can be written in this way.
		

Crossrefs

Subsequence of A002479 and hence of A000408.
Cf. A155560, A338432 (triangle version of array), A339047 (multiplicities).

Programs

  • Mathematica
    f[upto_]:=Module[{max=Ceiling[Sqrt[upto-1]]},Select[Union[ First[#]^2+ 2Last[#]^2&/@Tuples[Range[13],{2}]],#<=upto&]]; f[200] (* Harvey P. Dale, Jun 17 2011 *)
  • PARI
    isA154777(n,/* use optional 2nd arg to get other analogous sequences */c=2) = { for( b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))}
    for( n=1,200, isA154777(n) & print1(n","))

A003332 Numbers that are the sum of 9 positive cubes.

Original entry on oeis.org

9, 16, 23, 30, 35, 37, 42, 44, 49, 51, 56, 58, 61, 63, 65, 68, 70, 72, 75, 77, 79, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 107, 108, 110, 112, 113, 114, 115, 119, 120, 121, 122, 124, 126, 127, 128, 129, 131, 133, 134, 135, 138, 139, 140, 141, 142, 145, 146, 147
Offset: 1

Views

Author

Keywords

Comments

422 and 471 are the two largest of only 114 positive integers not in this sequence. This can be proved by induction. - M. F. Hasler, Aug 13 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1352 is in the sequence as 1352 = 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 8^3.
2312 is in the sequence as 2312 = 5^3 + 5^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3 + 7^3 + 8^3.
3383 is in the sequence as 3383 = 4^3 + 5^3 + 5^3 + 5^3 + 6^3 + 6^3 + 8^3 + 10^3 + 10^3. (End)
		

Crossrefs

Cf. numbers that are the sum of x nonzero y-th powers:
A000404 (x=2, y=2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).

Programs

  • Mathematica
    With[{upto=150},Select[Union[Total/@Tuples[Range[Floor[Surd[upto-8,3]]]^3, 9]],#<=upto&]](* Harvey P. Dale, Jan 04 2015 *)
  • PARI
    (A003332_upto(N, k=9, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(160) \\ See also A003333 for alternate code. - M. F. Hasler, Aug 02 2020
    A003332(n)=if(n>357, n+114, A003332_upto(471)[n]) \\ M. F. Hasler, Aug 13 2020

Formula

a(n) = 114 + n for all n > 357. - M. F. Hasler, Aug 13 2020

A206399 a(0) = 1; for n > 0, a(n) = 41*n^2 + 2.

Original entry on oeis.org

1, 43, 166, 371, 658, 1027, 1478, 2011, 2626, 3323, 4102, 4963, 5906, 6931, 8038, 9227, 10498, 11851, 13286, 14803, 16402, 18083, 19846, 21691, 23618, 25627, 27718, 29891, 32146, 34483, 36902, 39403, 41986, 44651, 47398, 50227, 53138, 56131, 59206, 62363, 65602
Offset: 0

Views

Author

Bruno Berselli, Feb 07 2012

Keywords

Comments

Apart from the first term, numbers of the form (r^2 + 2*s^2)*n^2 + 2 = (r*n)^2 + (s*n - 1)^2 + (s*n + 1)^2: in this case is r = 3, s = 4. After 1, all terms are in A000408.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 41*n^2+2: n in [0..39]];
    
  • Magma
    I:=[1,43,166,371]; [n le 4 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..41]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Join[{1}, 41 Range[39]^2 + 2]
    CoefficientList[Series[(1 + x) (1 + 39 x + x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=if(n,41*n^2+2,1) \\ Charles R Greathouse IV, Sep 24 2015

Formula

O.g.f.: (1 + x)*(1 + 39*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*(41*x^2 + 41*x + 2) - 1. - Elmo R. Oliveira, Nov 29 2024

A003334 Numbers that are the sum of 11 positive cubes.

Original entry on oeis.org

11, 18, 25, 32, 37, 39, 44, 46, 51, 53, 58, 60, 63, 65, 67, 70, 72, 74, 77, 79, 81, 84, 86, 88, 89, 91, 93, 95, 96, 98, 100, 102, 103, 105, 107, 109, 110, 112, 114, 115, 116, 117, 119, 121, 122, 123, 124, 126, 128, 129, 130, 131, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020
The sequence contains all integers greater than 321 which is the last of only 92 positive integers not in this sequence. - M. F. Hasler, Aug 25 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1120 is in the sequence as 1120 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 +  8^3.
2339 is in the sequence as 2339 = 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 9^3 +  9^3.
3594 is in the sequence as 3594 = 4^3 + 5^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3 + 7^3 + 7^3 + 8^3 + 10^3. (End)
		

Crossrefs

Other sequences S(k, m) of numbers that are the sum of k nonzero m-th powers:
A000404 = S(2, 2), A000408 = S(3, 2), A000414 = S(4, 2) complement of A000534,
A047700 = S(5, 2) complement of A047701, A180968 = complement of S(6,2);
A003325 = S(2, 3), A003072 = S(3, 3), A003327 .. A003335 = S(4 .. 12, 3) and A332107 .. A332111 = complement of S(7 .. 11, 3);
A003336 .. A003346 = S(2 .. 12, 4), A003347 .. A003357 = S(2 .. 12, 5),
A003358 .. A003368 = S(2 .. 12, 6), A003369 .. A003379 = S(2 .. 12, 7),
A003380 .. A003390 = S(2 .. 12, 8), A003391 .. A004801 = S(2 .. 12, 9),
A004802 .. A004812 = S(2 .. 12, 10), A004813 .. A004823 = S(2 .. 12, 11).

Programs

  • PARI
    (A003334_upto(N, k=11, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(150) \\ See also A003333 for alternate code. - M. F. Hasler, Aug 03 2020

Formula

a(n) = n + 92 for all n > 229. - M. F. Hasler, Aug 25 2020

A003359 Numbers that are the sum of 3 nonzero 6th powers.

Original entry on oeis.org

3, 66, 129, 192, 731, 794, 857, 1459, 1522, 2187, 4098, 4161, 4224, 4826, 4889, 5554, 8193, 8256, 8921, 12288, 15627, 15690, 15753, 16355, 16418, 17083, 19722, 19785, 20450, 23817, 31251, 31314, 31979, 35346, 46658, 46721, 46784, 46875, 47386, 47449
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
149781746 is in the sequence as 149781746 = 5^6 + 20^6 + 21^6.
244687691 is in the sequence as 244687691 = 5^6 + 9^6 + 25^6.
617835648 is in the sequence as 617835648 = 4^6 + 26^6 + 26^6. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A004432 Numbers that are the sum of 3 distinct nonzero squares.

Original entry on oeis.org

14, 21, 26, 29, 30, 35, 38, 41, 42, 45, 46, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 69, 70, 74, 75, 77, 78, 81, 83, 84, 86, 89, 90, 91, 93, 94, 98, 101, 104, 105, 106, 107, 109, 110, 113, 114, 115, 116, 117, 118, 120, 121, 122, 125, 126, 129, 131, 133
Offset: 1

Views

Author

Keywords

Comments

Numbers that can be written as a(n) = x^2 + y^2 + z^2 with 0 < x < y < z.
This is a subsequence (equal to the range) of A024803. As a set, it is the union of A025339 and A024804, subsequences of numbers having exactly one, resp. more than one, such representations. - M. F. Hasler, Jan 25 2013
Conjecture: a number n is a sum of 3 squares, but not a sum of 3 distinct nonzero squares (i.e., is in A004432 but not A000408), if and only if it is of the form 4^j*s, where j >= 0 and s in {1, 2, 3, 5, 6, 9, 10, 11, 13, 17, 18, 19, 22, 25, 27, 33, 34, 37, 43, 51, 57, 58, 67, 73, 82, 85, 97, 99, 102, 123, 130, 163, 177, 187, 193, 267, 627, 697}. - Jeffrey Shallit, Jan 15 2017
4*a(n) gives the sums of 3 distinct nonzero even squares. - Wesley Ivan Hurt, Apr 05 2021

Examples

			14 = 1^2 + 2^2 + 3^2;
62 = 1^2 + 5^2 + 6^2.
		

Crossrefs

Programs

  • Haskell
    a004432 n = a004432_list !! (n-1)
    a004432_list = filter (p 3 $ tail a000290_list) [1..] where
       p k (q:qs) m = k == 0 && m == 0 ||
                      q <= m && k >= 0 && (p (k - 1) qs (m - q) || p k qs m)
    -- Reinhard Zumkeller, Apr 22 2013
  • Mathematica
    f[upto_]:=Module[{max=Floor[Sqrt[upto]]},Select[Union[Total/@ (Subsets[ Range[ max],{3}]^2)],#<=upto&]]; f[150]  (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    is_A004432(n)=for(x=1,sqrtint(n\3),for(y=x+1,sqrtint((n-1-x^2)\2),issquare(n-x^2-y^2)&return(1)))  \\ M. F. Hasler, Feb 02 2013
    

Formula

A004432 = { x^2 + y^2 + z^2; 0 < x < y < z }.
n is in A004432 <=> A025442(n) > 0. - M. F. Hasler, Feb 03 2013

A004822 Numbers that are the sum of 11 positive 11th powers.

Original entry on oeis.org

11, 2058, 4105, 6152, 8199, 10246, 12293, 14340, 16387, 18434, 20481, 22528, 177157, 179204, 181251, 183298, 185345, 187392, 189439, 191486, 193533, 195580, 197627, 354303, 356350, 358397, 360444, 362491, 364538, 366585, 368632, 370679, 372726, 531449, 533496, 535543
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
460807606 is in the sequence as 460807606 = 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 3^11 + 3^11 + 5^11 + 5^11 + 6^11.
795925198 is in the sequence as 795925198 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 4^11 + 4^11 + 5^11 + 6^11 + 6^11.
1504395992 is in the sequence as 1504395992 = 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 6^11 + 6^11 + 6^11 + 6^11. (End)
		

Crossrefs

Cf. A008455.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Mathematica
    M = 6347807907; m = M^(1/11) // Ceiling; Reap[
    For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
    For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
    For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,
    For[j = i, j <= m, j++, For[k = j, k <= m, k++,
    s = a^11+b^11+c^11+d^11+e^11+f^11+g^11+h^11+i^11+j^11+k^11;
    If[s <= M, Sow[s]]]]]]]]]]]]]][[2, 1]] // Union (* Jean-François Alcover, Dec 01 2020 *)

A003364 Numbers that are the sum of 8 positive 6th powers.

Original entry on oeis.org

8, 71, 134, 197, 260, 323, 386, 449, 512, 736, 799, 862, 925, 988, 1051, 1114, 1177, 1464, 1527, 1590, 1653, 1716, 1779, 1842, 2192, 2255, 2318, 2381, 2444, 2507, 2920, 2983, 3046, 3109, 3172, 3648, 3711, 3774, 3837, 4103, 4166, 4229, 4292, 4355, 4376, 4418, 4439, 4481
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
167223 is in the sequence as 167223 = 1^6 + 1^6 + 3^6 + 3^6 + 3^6 + 3^6 + 6^6 + 7^6.
290366 is in the sequence as 290366 = 1^6 + 4^6 + 4^6 + 5^6 + 5^6 + 5^6 + 7^6 + 7^6.
443086 is in the sequence as 443086 = 2^6 + 3^6 + 5^6 + 5^6 + 5^6 + 5^6 + 7^6 + 8^6. (End)
		

Crossrefs

Cf. A001014 (sixth powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A003371 Numbers that are the sum of 4 positive 7th powers.

Original entry on oeis.org

4, 131, 258, 385, 512, 2190, 2317, 2444, 2571, 4376, 4503, 4630, 6562, 6689, 8748, 16387, 16514, 16641, 16768, 18573, 18700, 18827, 20759, 20886, 22945, 32770, 32897, 33024, 34956, 35083, 37142, 49153, 49280, 51339, 65536, 78128, 78255, 78382, 78509
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			16768 is in the sequence as 16768 = 2^7 + 2^7 + 2^7 + 4^7;
18700 is in the sequence as 18700 = 1^7 + 2^7 + 3^7 + 4^7;
65536 is in the sequence as 65536 = 4^7 + 4^7 + 4^7 + 4^7.
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020

A003373 Numbers that are the sum of 6 positive 7th powers.

Original entry on oeis.org

6, 133, 260, 387, 514, 641, 768, 2192, 2319, 2446, 2573, 2700, 2827, 4378, 4505, 4632, 4759, 4886, 6564, 6691, 6818, 6945, 8750, 8877, 9004, 10936, 11063, 13122, 16389, 16516, 16643, 16770, 16897, 17024, 18575, 18702, 18829, 18956, 19083, 20761, 20888
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
3077074 is in the sequence as 3077074 = 1^7 + 2^7 + 5^7 + 5^7 + 7^7 + 8^7.
7160441 is in the sequence as 7160441 = 2^7 + 2^7 + 2^7 + 6^7 + 8^7 + 9^7.
12921079 is in the sequence as 12921079 = 2^7 + 2^7 + 2^7 + 7^7 + 8^7 + 10^7. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020
Previous Showing 31-40 of 104 results. Next