A225816
Square array A(n,k) = (k!)^n, n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 4, 1, 1, 1, 24, 36, 8, 1, 1, 1, 120, 576, 216, 16, 1, 1, 1, 720, 14400, 13824, 1296, 32, 1, 1, 1, 5040, 518400, 1728000, 331776, 7776, 64, 1, 1, 1, 40320, 25401600, 373248000, 207360000, 7962624, 46656, 128, 1, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 6, 24, 120, ...
1, 1, 4, 36, 576, 14400, ...
1, 1, 8, 216, 13824, 1728000, ...
1, 1, 16, 1296, 331776, 207360000, ...
1, 1, 32, 7776, 7962624, 24883200000, ...
-
A:= (n, k)-> k!^n:
seq(seq(A(n,d-n), n=0..d), d=0..12);
A134372
a(n) = ((2n)!)^2.
Original entry on oeis.org
1, 4, 576, 518400, 1625702400, 13168189440000, 229442532802560000, 7600054456551997440000, 437763136697395052544000000, 40990389067797283140009984000000, 5919012181389927685417441689600000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A010050,
A134366,
A134367,
A134368,
A134369,
A134371,
A134374,
A134375,
A334379,
A334632.
A134370
a(n) = ((2n+1)!)^(n+2).
Original entry on oeis.org
1, 216, 207360000, 3252016064102400000, 2283380023591730815784976384000000, 161469323688736156802100136913438716723200000000000000, 2260697901194635682690248130915498742378267539496871953338204160000000000000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A134366,
A134367,
A134368,
A134369,
A134371,
A134374,
A134375.
A134373
a(n) = ((2n)!)^3.
Original entry on oeis.org
1, 8, 13824, 373248000, 65548320768000, 47784725839872000000, 109903340320478724096000000, 662559760549147780765974528000000, 9159226129831418921308831875072000000000, 262435789155225791087396177124997988352000000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A010050,
A134366,
A134367,
A134368,
A134369,
A134371,
A134373,
A134374,
A134375.
-
Table[((2n)!)^(3), {n, 0, 10}]
((2*Range[0, 10])!)^3 (* Harvey P. Dale, Jul 25 2016 *)
-
[factorial(2*n)**3 for n in range(0,9)] # Stefano Spezia, Apr 22 2025
A249677
Triangle, read by rows, with row n forming the coefficients in Product_{k=0..n} (1 + k^3*x).
Original entry on oeis.org
1, 1, 1, 1, 9, 8, 1, 36, 251, 216, 1, 100, 2555, 16280, 13824, 1, 225, 15055, 335655, 2048824, 1728000, 1, 441, 63655, 3587535, 74550304, 444273984, 373248000, 1, 784, 214918, 25421200, 1305074809, 26015028256, 152759224512, 128024064000, 1, 1296, 616326, 135459216, 14320729209, 694213330464, 13472453691584, 78340747014144, 65548320768000
Offset: 0
Triangle begins:
1;
1, 1;
1, 9, 8;
1, 36, 251, 216;
1, 100, 2555, 16280, 13824;
1, 225, 15055, 335655, 2048824, 1728000;
1, 441, 63655, 3587535, 74550304, 444273984, 373248000;
1, 784, 214918, 25421200, 1305074809, 26015028256, 152759224512, 128024064000;
1, 1296, 616326, 135459216, 14320729209, 694213330464, 13472453691584, 78340747014144, 65548320768000; ...
-
{T(n,k)=polcoeff(prod(m=0,n,1 + m^3*x +x*O(x^n)),k)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A381161
a(n) = (10*n)!/((n!)^3*(2*n)!*(5*n)!).
Original entry on oeis.org
1, 15120, 3491888400, 1304290155168000, 601680868708529610000, 312696069714024464473125120, 175460887238127057573116837126400, 103865765423748548466734695459219968000, 63958974275578307119821712720619705931210000, 40596987692554701292235753375257230410967703200000
Offset: 0
A381165
a(n) = Sum_{k=0..n} binomial(2*n,n)*binomial(n, k)*(5*k)!/((k!)^3*(2*k)!).
Original entry on oeis.org
1, 122, 114126, 169305620, 307902541870, 628881704226972, 1384648756554128604, 3213280613371692112392, 7752574653184355259506670, 19272593072633780827550508620, 49062146831202726778631520779476, 127331178560917294198014376933764792, 335791906923524740189894975371277920796
Offset: 0
-
a[n_]:=Sum[Binomial[2n,n]Binomial[n, k](5k)!/((k!)^3*(2k)!), {k, 0, n}]; Array[a, 13, 0]
A269947
Triangle read by rows, Stirling cycle numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+(n-1)^3*T(n-1,k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 8, 9, 1, 0, 216, 251, 36, 1, 0, 13824, 16280, 2555, 100, 1, 0, 1728000, 2048824, 335655, 15055, 225, 1, 0, 373248000, 444273984, 74550304, 3587535, 63655, 441, 1, 0, 128024064000, 152759224512, 26015028256, 1305074809, 25421200, 214918, 784, 1
Offset: 0
Triangle starts:
1,
0, 1,
0, 1, 1,
0, 8, 9, 1,
0, 216, 251, 36, 1,
0, 13824, 16280, 2555, 100, 1,
0, 1728000, 2048824, 335655, 15055, 225, 1.
-
T := proc(n, k) option remember;
`if`(n=k, 1,
`if`(k<0 or k>n, 0,
T(n-1, k-1) + (n-1)^3*T(n-1, k))) end:
for n from 0 to 6 do seq(T(n,k), k=0..n) od;
-
T[n_, k_] := T[n, k] = Which[n == k, 1, k < 0 || k > n, 0, True, T[n - 1, k - 1] + (n - 1)^3 T[n - 1, k]];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
A316862
Expansion of 1/(Sum_{k>=0} (k!)^3 x^k).
Original entry on oeis.org
1, -1, -7, -201, -13351, -1697705, -369575303, -127249900617, -65286578868455, -47651775381867241, -47688241963081263175, -63505249400026210723209, -109775495351620406817045415, -241236985075124408660287423529, -662075390371447206867029299628807
Offset: 0
1/(Sum_{k>=0} (k!)^b x^k):
A167894 (b=1),
A113871 (b=2), this sequence (b=3).
-
a[n_] := -Sum[(k!)^3*a[n - k], {k, n}]; a[0] = 1; Array[a, 15, 0] (* Robert G. Wilson v, Jul 15 2018 *)
nmax = 20; CoefficientList[Series[1/Sum[k!^3 * x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 08 2020 *)
A351800
a(n) = [x^n] 1/Product_{j=1..n} (1 - j^3*x).
Original entry on oeis.org
1, 1, 73, 28800, 33120201, 83648533275, 393764054984212, 3103381708489548640, 37965284782803741391413, 681476650259874114533077575, 17184647574689079046814198039765, 588057239856779143071625300022102376, 26548105106818292578525347802793561068860
Offset: 0
a(2) = (1*1)^3 + (1*2)^3 + (2*2)^3 = 1 + 8 + 64 = 73.
-
b:= proc(n, k) option remember; `if`(k=0, 1,
add(b(j, k-1)*j^3, j=1..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..15);
-
Table[SeriesCoefficient[Product[1/(1 - k^3*x), {k, 1, n}], {x, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, May 17 2025 *)
Comments