cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-58 of 58 results.

A226379 a(5n) = 2*n*(2*n+1), a(5n+1) = (2*n-3)*(2*n+5), a(5n+2) = (2*n-1)*(2*n+3), a(5n+3) = (2*n+2)*(2*n+1), a(5n+4) = (2*n+1)*(2*n+3).

Original entry on oeis.org

0, -15, -3, 2, 3, 6, -7, 5, 12, 15, 20, 9, 21, 30, 35, 42, 33, 45, 56, 63, 72, 65, 77, 90, 99, 110, 105, 117, 132, 143, 156, 153, 165, 182, 195, 210, 209, 221, 240, 255, 272, 273, 285, 306, 323, 342, 345, 357, 380, 399, 420, 425, 437
Offset: 0

Views

Author

Paul Curtz, Jun 05 2013

Keywords

Comments

The sequence is the fifth row of the following array:
0, 6, 20, 42, 72, 110, 156, 210, 272, ... A002943
0, 3, 6, 15, 20, 35, 42, 63, 72, ... bisections A002943, A000466
0, 2, 3, 6, 12, 15, 20, 30, 35, ... A226023 (trisections A002943, A000466, A002439)
0, -3, 2, 3, 6, 5, 12, 15, 20, ... A214297 (quadrisections A078371)
0, -15, -3, 2, 3, 6, -7, 5, 12, ... a(n)
0, -63, -15, -3, 2, 3, 6, -55, -7, ...
The principle of construction is that (i) the lower left triangular portion has constant values down the diagonals (6, 3, 2, -3, -15, ...), defined from row 4 on by the negated values of A024036. (ii) The extension along the rows is defined by maintaining bisections, trisections, quadrisections etc of the form (2*n+x)*(2*n+y) with some constants x and y. In the fifth line this needs the quintisections shown in the NAME.
Each row in the array has the subsequences of the previous row plus another subsequence of the format (2*n+1)*(2*n+y) shuffled in; the first A002943, the second also A000466, the third also A002439, the fourth also A078371, and the fifth (2*n+3)*(2*n-5).
Only the first three rows are monotonically increasing everywhere.
a(n) is divisible by A226203(n).
Numerators of: 0, -15/4, -3/4, 2/9, 3/16, 6/25, -7/36, 5/36, 12/49, 15/64, 20/81, ... = a(n)/A226096(n). A permutation of A225948(n+1)/A226008(n+1).
Is the sequence increasing monotonically from 221 on?

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( -x*(15-12*x-5*x^2-x^3-3*x^4-17*x^5+12*x^6+3*x^7-x^8+x^9)/((1-x^5)^2*(1-x)) )); // G. C. Greubel, Mar 23 2024
    
  • Mathematica
    CoefficientList[Series[x*(15 - 12*x - 5*x^2 - x^3 - 3*x^4 - 17*x^5 + 12*x^6 + 3*x^7 - x^8 + x^9)/((x^4 + x^3 + x^2 + x + 1)^2*(x - 1)^3), {x, 0, 80}], x] (* Wesley Ivan Hurt, Oct 03 2017 *)
  • SageMath
    def A226379_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( -x*(15-12*x-5*x^2-x^3-3*x^4-17*x^5+12*x^6+3*x^7-x^8+x^9)/((1-x^5)^2*(1-x)) ).list()
    A226379_list(50) # G. C. Greubel, Mar 23 2024

Formula

4*a(n) = A226096(n) - period 5: repeat [1, 64, 16, 1, 4].
G.f.: x*(15-12*x-5*x^2-x^3-3*x^4-17*x^5+12*x^6+3*x^7-x^8+x^9) / ( (x^4+x^3+x^2+x+1)^2 *(x-1)^3 ). - R. J. Mathar, Jun 13 2013
a(n) = a(n-1)+2*a(n-5)-2*a(n-6)-a(n-10)+a(n-11) for n > 10. - Wesley Ivan Hurt, Oct 03 2017

A289870 a(n) = n*(n + 1) for n odd, otherwise a(n) = (n - 1)*(n + 1).

Original entry on oeis.org

-1, 2, 3, 12, 15, 30, 35, 56, 63, 90, 99, 132, 143, 182, 195, 240, 255, 306, 323, 380, 399, 462, 483, 552, 575, 650, 675, 756, 783, 870, 899, 992, 1023, 1122, 1155, 1260, 1295, 1406, 1443, 1560, 1599, 1722, 1763, 1892, 1935, 2070, 2115, 2256, 2303, 2450, 2499
Offset: 0

Views

Author

Keywords

Comments

a(n) is a fifth-order linear recurrence whose main interest is that it is related to (at least) eight other sequences (see the formula section).

Crossrefs

After -1, subsequence of A035106, A198442 and A214297.

Programs

  • Mathematica
    a[n_] := (n + 1)(n - 1 + Mod[n, 2]); Table[a[n], {n, 0, 50}]
  • PARI
    a(n)=if(n%2, n, n-1)*(n+1) \\ Charles R Greathouse IV, Jul 14 2017

Formula

a(n) = (n + 1)*(n - 1 + (n mod 2)).
a(n) = n * A109613(n-1) for n>0.
a(n) = -A114285(n) * A109613(n).
a(n) = A002378(n) - A193356(n).
a(n) = A289296(-n).
a(n) = n^2 - (-1)^n * A093178(n).
a(2*k) = A000466(k).
G.f.: (1-3*x-3*x^2-3*x^3)/((-1+x)^3*(1+x)^2).

A362847 Triangle read by rows, T(n, k) = 4^k * Gamma(n + k + 1/2) / Gamma(n - k + 1/2).

Original entry on oeis.org

1, 1, 3, 1, 15, 105, 1, 35, 945, 10395, 1, 63, 3465, 135135, 2027025, 1, 99, 9009, 675675, 34459425, 654729075, 1, 143, 19305, 2297295, 218243025, 13749310575, 316234143225, 1, 195, 36465, 6235515, 916620705, 105411381075, 7905853580625, 213458046676875
Offset: 0

Views

Author

Peter Luschny, May 05 2023

Keywords

Examples

			[0] 1;
[1] 1,   3;
[2] 1,  15,   105;
[3] 1,  35,   945,   10395;
[4] 1,  63,  3465,  135135,   2027025;
[5] 1,  99,  9009,  675675,  34459425,   654729075;
[6] 1, 143, 19305, 2297295, 218243025, 13749310575, 316234143225;
		

Crossrefs

Cf. A362848 (row sums), A000466 (column 1), A101485 (main diagonal).

Programs

  • Maple
    T := (n, k) -> 4^k * GAMMA(n + k + 1/2) / GAMMA(n - k + 1/2):
    seq(seq(T(n, k), k = 0..n), n = 0..7);
  • Mathematica
    T[n_,k_]:=(2*(n+k)-1)!!/(2*(n-k)-1)!!;Flatten[Table[T[n,k],{n,0,7},{k,0,n}]] (* Detlef Meya, Oct 09 2023 *)

Formula

T(n ,k ) = (2*(n + k) - 1)!!/(2*(n - k) - 1)!!; 0 <= n <= k. - Detlef Meya, Oct 09 2023

A381059 Array read by ascending antidiagonals: A(n,k) = numerator(binomial(n-1/2,k)) with k >=0.

Original entry on oeis.org

1, 1, -1, 1, 1, 3, 1, 3, -1, -5, 1, 5, 3, 1, 35, 1, 7, 15, -1, -5, -63, 1, 9, 35, 5, 3, 7, 231, 1, 11, 63, 35, -5, -3, -21, -429, 1, 13, 99, 105, 35, 3, 7, 33, 6435, 1, 15, 143, 231, 315, -7, -5, -9, -429, -12155, 1, 17, 195, 429, 1155, 63, 7, 5, 99, 715, 46189
Offset: 0

Views

Author

Stefano Spezia, Feb 12 2025

Keywords

Comments

Numerators of the binomial coefficients for half-integers. The denominators are given by the absolute values of A173755.

Examples

			The array of the binomial coefficients for half-integers begins as:
  1, -1/2,  3/8,  -5/16,   35/128, -63/256, ...
  1,  1/2, -1/8,   1/16,   -5/128,   7/256, ...
  1,  3/2,  3/8,  -1/16,    3/128,  -3/256, ...
  1,  5/2, 15/8,   5/16,   -5/128,   3/256, ...
  1,  7/2, 35/8,  35/16,   35/128,  -7/256, ...
  1,  9/2, 63/8, 105/16,  315/128,  63/256, ...
  1, 11/2, 99/8, 231/16, 1155/128, 693/256, ...
  ...
		

Crossrefs

Columns k=0..1 give A000012, A060747.
Row n=1 gives A002596.
Main diagonal gives A001790.

Programs

  • Mathematica
    A[n_,k_]:=Numerator[Binomial[n-1/2,k]]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
    A[n_,k_]:=Numerator[(2n-1)!!/((2(n-k)-1)!!2^k k!)]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

A(n,k) = numerator((2*n - 1)!!/((2*(n - k) - 1)!!*2^k*k!)).
A(n,2) = A000466(n-1) for n > 0.
A(n,3) = A162540(n-3) for n > 3.
A(0,n) = (-1)^n*A001790(n).
abs(A(2,n)) = abs(A161200(n)).
abs(A(3,n)) = abs(A161202(n)).

A384488 Numbers k having a divisor d such that d - k/d is prime.

Original entry on oeis.org

3, 4, 6, 8, 10, 12, 14, 15, 18, 20, 24, 26, 28, 30, 32, 35, 36, 38, 40, 42, 44, 48, 50, 54, 60, 62, 63, 66, 68, 70, 72, 74, 78, 80, 84, 86, 88, 90, 92, 96, 98, 99, 102, 104, 108, 110, 114, 120, 122, 126, 128, 130, 132, 138, 140, 143, 144, 146, 150, 152, 154, 158, 162, 164, 168, 170, 174, 176, 180
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 30 2025

Keywords

Comments

Presumably, all odd terms are in A000466.

Examples

			a(6) = 12 is a term because 12 = 1*12 with 12 - 1 = 11 prime.
		

Crossrefs

Cf. A000466, A005408, A355643. Includes A005563 and 2 * A052147.

Programs

  • Magma
    [k: k in [1..180] | not #[d: d in Divisors (k) | IsPrime(d-(k div d))] eq 0];
    
  • Maple
    filter:= k -> ormap(d -> d^2 > k and isprime(d - k/d), numtheory:-divisors(k)):
    select(filter, [$1..200]); # Robert Israel, Jun 30 2025
  • Mathematica
    A384488Q[k_] := AnyTrue[Divisors[k], PrimeQ[# - k/#] &];
    Select[Range[200], A384488Q] (* Paolo Xausa, Jun 30 2025 *)
  • PARI
    isok(k) = fordiv(k, d, if (isprime(d - k/d), return(1))); \\ Michel Marcus, Jun 01 2025

A268484 a(n) = (n + 1)*(4*n^2 + 14*n + 9)/3.

Original entry on oeis.org

3, 18, 53, 116, 215, 358, 553, 808, 1131, 1530, 2013, 2588, 3263, 4046, 4945, 5968, 7123, 8418, 9861, 11460, 13223, 15158, 17273, 19576, 22075, 24778, 27693, 30828, 34191, 37790, 41633, 45728, 50083, 54706, 59605, 64788, 70263, 76038, 82121, 88520, 95243
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 12 2016

Keywords

Examples

			a(0) = 1*3 = 3;
a(1) = 1*3 + 3*5 = 18;
a(2) = 1*3 + 3*5 + 5*7 = 53;
a(3) = 1*3 + 3*5 + 5*7 + 7*9 = 116, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[(n + 1) ((4 n^2 + 14 n + 9)/3), {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {3, 18, 53, 116}, 40]
  • PARI
    a(n)=(n+1)*(4*n^2+14*n+9)/3 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: (3 + 6*x - x^2)/(x - 1)^4.
a(n) = Sum_{k = 0..n} (2*k + 1)*(2*k + 3) = Sum_{k = 0..n} A005408(k)*A005408(k + 1).
Sum_{n>=0} 1/a(n) = 0.4315109123788144393864...

A269342 a(n) = (n + 1)*(2*n + 1)*(4*n + 9)/3.

Original entry on oeis.org

3, 26, 85, 196, 375, 638, 1001, 1480, 2091, 2850, 3773, 4876, 6175, 7686, 9425, 11408, 13651, 16170, 18981, 22100, 25543, 29326, 33465, 37976, 42875, 48178, 53901, 60060, 66671, 73750, 81313, 89376, 97955, 107066, 116725, 126948, 137751, 149150, 161161
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 24 2016

Keywords

Examples

			a(0) = 0*2 + 1*3 = 3;
a(1) = 0*2 + 1*3 + 2*4 + 3*5 = 26;
a(2) = 0*2 + 1*3 + 2*4 + 3*5 + 4*6 + 5*7 = 85;
a(3) = 0*2 + 1*3 + 2*4 + 3*5 + 4*6 + 5*7 + 6*8 + 7*9 = 196;
a(4) = 0*2 + 1*3 + 2*4 + 3*5 + 4*6 + 5*7 + 6*8 + 7*9 + 8*10 + 9*11 = 375, etc.
		

Crossrefs

Programs

  • Magma
    [(n+1)*(2*n+1)*(4*n+9)/3: n in [0..50]]; // Vincenzo Librandi, Feb 25 2016
  • Mathematica
    Table[(n + 1) (2 n + 1) (4 n + 9)/3, {n, 0, 38}]
    LinearRecurrence[{4, -6, 4, -1}, {3, 26, 85, 196}, 39]
    Table[Sum[8 k^2 + 12 k + 3, {k, 0, n}], {n, 0, 38}]
  • PARI
    Vec((3 + 14*x - x^2)/(1 - x)^4 + O(x^50)) \\ Michel Marcus, Feb 25 2016
    

Formula

G.f.: (3 + 14*x - x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = Sum_{k=0..n} (8*k^2 + 12*k + 3).
Sum_{n>=0} 1/a(n) = 3*(80*log(2) + 5*Pi - 48)/175 = 0.397024075075621559...

A365983 Even numbers k such that k^2 - 1 is a powerful number.

Original entry on oeis.org

26, 70226, 130576328, 189750626, 512706121226, 13837575261124, 99612037019890, 1385331749802026
Offset: 1

Views

Author

Jud McCranie, Sep 24 2023

Keywords

Comments

This sequence is a subsequence of A060860 (the even terms) and a supersequence of A094835. All the terms of A094835 are in this sequence, but 130576328 is not in A094835. A094835 also shows that this sequence is infinite.
Terms A076445(n)+1 are terms of this sequence because A076445(n) and A076445(n)+2 are powerful and (A076445(n)+1)^2-1 = A076445(n) * (A076445(n)+2), which is also powerful.
a(n) - 1 is an odd powerful number (A062739). - Amiram Eldar, Feb 23 2024

Examples

			26^2 - 1 = 675 = 3^3 * 5^2 is powerful.
130576328^2 - 1 = 17050177433963583 = 3^2 * 7^3 * 13^2 * 293^2 * 617^2, whose exponents are all greater than 1, so it is powerful.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, entries 70226 and 485.

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{p = Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3), 2}, {i, 1, Sqrt[max/j^3], 2}]]], i}, i = Position[Differences[p], 2] // Flatten; Sqrt[p[[i]]*(p[[i]] + 2) + 1]]; seq[10^10] (* Amiram Eldar, Feb 23 2024 *)
  • PARI
    isok(k) = !(k%2) && ispowerful(k^2-1); \\ Michel Marcus, Sep 25 2023

Extensions

a(5)-a(8) from Amiram Eldar, Feb 23 2024
Previous Showing 51-58 of 58 results.