cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 208 results. Next

A126812 Ramanujan numbers (A000594) read mod 4.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

References

  • D. B. Lahiri, On Ramanujan's function tau(n) and divisor function sigma_k(n), I, Bulletin of the Calcutta Mathematical Society, Vol. 38 (1946), pp. 193-206; II, ibid., Vol. 39 (1947), pp. 33-51.

Crossrefs

Programs

Formula

a(n) == n^2 * sigma_7(n) (mod 4) (Lahiri, 1946-1947). - Amiram Eldar, Jan 04 2025

A126833 Ramanujan numbers (A000594) read mod 25.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 6, 5, 7, 5, 12, 6, 12, 6, 10, 11, 16, 7, 20, 15, 12, 12, 22, 10, 0, 12, 20, 18, 5, 10, 7, 21, 24, 16, 5, 21, 11, 20, 24, 0, 17, 12, 17, 11, 10, 22, 21, 22, 18, 0, 7, 11, 2, 20, 10, 5, 15, 5, 10, 5, 12, 7, 17, 18, 10, 24, 16, 23, 19, 5, 22, 10, 22, 11, 0, 10, 22, 24, 5, 5
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A013957, A126832 (mod 5^1), this sequence (mod 5^2), A126834 (mod 5^3), A126835 (mod 5^4).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 25]; Array[a, 100] (* Amiram Eldar, Jan 04 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 25; \\ Amiram Eldar, Jan 04 2025

Formula

a(n) == n * sigma_9(n) (mod 25) (Andrews and Berndt, 2012, eq. (5.4.2), p. 98). - Amiram Eldar, Jan 04 2025

A126834 Ramanujan numbers (A000594) read mod 125.

Original entry on oeis.org

1, 101, 2, 28, 80, 77, 6, 105, 107, 80, 112, 56, 12, 106, 35, 11, 66, 57, 45, 115, 12, 62, 22, 85, 25, 87, 45, 43, 5, 35, 82, 71, 99, 41, 105, 121, 61, 45, 24, 25, 67, 87, 42, 11, 60, 97, 121, 22, 43, 25, 7, 86, 52, 45, 85, 5, 90, 5, 10, 105, 37, 32, 17, 18, 85, 124, 116, 98, 44
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A126832 (mod 5^1), A126833 (mod 5^2), this sequence (mod 5^3), A126835 (mod 5^4).

Programs

  • Mathematica
    Mod[RamanujanTau@ #, 125] & /@ Range@ 69 (* Michael De Vlieger, Apr 26 2016 *)
  • PARI
    a(n) = ramanujantau(n) % 125; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) = (5*n^2*sigma_7(n) - 4*n*sigma_2(n)) mod 125, for n coprime to 5. - Michel Marcus, Apr 26 2016

A126835 Ramanujan numbers (A000594) read mod 625.

Original entry on oeis.org

1, 601, 252, 403, 455, 202, 131, 105, 107, 330, 237, 306, 387, 606, 285, 261, 316, 557, 170, 240, 512, 562, 147, 210, 150, 87, 295, 293, 380, 35, 582, 571, 349, 541, 230, 621, 436, 295, 24, 275, 442, 212, 542, 511, 560, 222, 371, 147, 418, 150, 257, 336, 552, 420
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A126832 (mod 5^1), A126833 (mod 5^2), A126834 (mod 5^3), this sequence (mod 5^4).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 625]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 625; \\ Amiram Eldar, Jan 05 2025

A126839 Ramanujan numbers (A000594) read mod 11.

Original entry on oeis.org

1, 9, 10, 2, 1, 2, 9, 0, 9, 9, 1, 9, 4, 4, 10, 7, 9, 4, 0, 2, 2, 9, 10, 0, 7, 3, 5, 7, 0, 2, 7, 8, 10, 4, 9, 7, 3, 0, 7, 0, 3, 7, 5, 2, 9, 2, 8, 4, 8, 8, 2, 8, 5, 1, 1, 0, 0, 0, 5, 9, 1, 8, 4, 3, 4, 2, 4, 7, 1, 4, 8, 0, 4, 5, 4, 0, 9, 8, 1, 7, 1, 5, 5, 4, 9, 1, 0, 0, 4, 4, 3, 9, 4, 6, 0, 3, 4, 6, 9, 3, 2, 7, 6
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, this sequence (mod 11^1), A126840 (mod 11^2), A126841 (mod 11^3), A006571.

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 11]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 11; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) = A006571(n) (mod 11), n >= 1. For a proof see the Cowles link under A006571. See also the R. J. Mathar formula there. - Wolfdieter Lang, Feb 16 2016

A144248 Partial sums of A000594.

Original entry on oeis.org

1, -23, 229, -1243, 3587, -2461, -19205, 65275, -48368, -164288, 370324, -620, -578358, -176502, 1040658, 2027794, -4878140, -2150708, 8510712, 1400952, -2818536, -15649224, 2994048, 24283008, -1216217, 12649495, -60629585, -35982417, 92424213, 63212373, 10369205
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000594.

Programs

  • Mathematica
    lst={};s1=0;Do[s1=s1+RamanujanTau[n];AppendTo[lst,s1],{n,5!}];lst
    Accumulate[Array[RamanujanTau, 30]] (* Amiram Eldar, Jan 08 2025 *)
  • PARI
    a(n)=my(x='x, v=Vec( x * eta(x + x * O(x^(n-1)))^24)); sum(i=1,n,v[i]) \\ Charles R Greathouse IV, Jun 28 2014

A385658 Least prime p < 2n*(n+1) such that the polynomial Sum_{k=1..n} tau(k)*x^(n-k) is irreducible modulo p, or 1 if such p does not exist, where tau is Ramanujan's tau function given by A000594.

Original entry on oeis.org

1, 2, 5, 17, 59, 19, 43, 17, 19, 89, 47, 67, 257, 89, 173, 11, 103, 67, 103, 191, 29, 89, 101, 139, 19, 13, 19, 79, 79, 271, 223, 149, 131, 5, 37, 31, 593, 149, 353, 109, 293, 293, 17, 19, 97, 83, 59, 79, 883, 101, 71, 13, 199, 113, 1013, 29, 1279, 7, 181, 383, 269, 197, 17
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 03 2025

Keywords

Comments

Conjecture: a(n) > 1 for all n > 1. In other words, for each n = 2,3,... the polynomial x^(n-1) + tau(2)*x^(n-2) + ... + tau(n) is irreducible modulo some prime p < 2n*(n+1).

Examples

			a(5) = 59 since the prime 59 is smaller than 2*5*(5+1) = 60, and 59 is the least prime p such that the polynomial tau(1)*x^4 + tau(2)*x^3 + tau(3)*x^2 + tau(4)*x + tau(5) is irreducible modulo p.
		

Crossrefs

Programs

  • Mathematica
    Tau[n_]:=Tau[n]=RamanujanTau[n];
    P[n_,x_]:=P[n,x]=Sum[Tau[k]x^(n-k),{k,1,n}];
    tab={};Do[Do[If[IrreduciblePolynomialQ[P[n, x], Modulus->Prime[k]]==True, tab=Append[tab,Prime[k]]; Goto[aa]], {k, 1, PrimePi[2n(n+1)-1]}];tab=Append[tab,1]; Label[aa]; Continue, {n,1,63}];Print[tab]
  • PARI
    a(n) = forprime(p=2, 2*n*(n+1)-1, if (polisirreducible(Mod(sum(k=1, n, ramanujantau(k)*x^(n-k)), p)), return(p))); 1; \\ Michel Marcus, Aug 04 2025

A034778 Dirichlet convolution of Ramanujan numbers (A000594) with themselves.

Original entry on oeis.org

1, -48, 504, -2368, 9660, -24192, -33488, 239616, -163782, -463680, 1069224, -1193472, -1155476, 1607424, 4868640, 86016, -13811868, 7861536, 21322840, -22874880, -16877952, -51322752, 37286544, 120766464, -27669550, 55462848, -203834232
Offset: 1

Views

Author

Keywords

Comments

Multiplicative because A000594 is. - Christian G. Bower, May 16 2005

Examples

			G.f. = x - 48*x^2 + 504*x^3 - 2368*x^4 + 9660*x^5 - 24192*x^6 - 33488*x^7 + ...
		

Crossrefs

Cf. A000594.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, RamanujanTau[#]*RamanujanTau[n/#]&]; Array[a, 30] (* Jean-François Alcover, Nov 14 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = Vec( eta(x + x^n*O(x))^24); sumdiv(n, d, A[d] * A[n/d]))}; /* Michael Somos, Jul 16 2004 */
    
  • Perl
    use ntheory ":all"; for my $n (1..50) { say divisor_sum($n, sub { my $d=shift; ramanujan_tau($d)*ramanujan_tau($n/$d) } # Dana Jacobsen, Sep 05 2015

Formula

a(n) = Sum_{d|n} tau(d)tau(n/d) where tau(n) = A000594(n) is Ramanujan's tau function.

A035174 Ramanujan's tau function (or tau numbers (A000594)) for 2^n.

Original entry on oeis.org

1, -24, -1472, 84480, 987136, -196706304, 2699296768, 338071388160, -13641873096704, -364965248630784, 36697722069188608, -133296500464680960, -71957818786545926144, 1999978883828768833536, 99370119662955604738048
Offset: 0

Views

Author

Robert G. Wilson v, Jan 04 2003

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1 + 24x + 2048x^2). Proof by Robin Chapman: Follows from the formula tau(p^{n+2}) = tau(p)tau(p^{n+1}) - p^11 tau(p^n) for prime p, which comes from the theory of Hecke operators on modular forms. The p = 2 case gives a recurrence for tau(2^n) leading immediately to the g.f.

A064556 Ramanujan's tau function (or tau numbers (A000594)) for 10^n.

Original entry on oeis.org

1, -115920, 37534859200, -30328412970240000, -482606811957501440000, -2983637890141033828147200000
Offset: 0

Views

Author

Robert G. Wilson v, Jan 04 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ RamanujanTau[10^n], {n, 0, 5}]
  • PARI
    taup(p, e)={
        if(e==1,
            (65*sigma(p, 11)+691*sigma(p, 5)-691*252*sum(k=1, p-1, sigma(k, 5)*sigma(p-k, 5)))/756
        ,
            my(t=taup(p, 1));
            sum(j=0, e\2,
                (-1)^j*binomial(e-j, e-2*j)*p^(11*j)*t^(e-2*j)
            )
        )
    };
    a(n)=taup(5,n)*taup(2,n) \\ Charles R Greathouse IV, Sep 06 2015
  • Perl
    use bigint; use ntheory ":all"; say "$ ",ramanujan_tau(10 ** $) for 0..19; # Dana Jacobsen, Sep 05 2015
    
Previous Showing 21-30 of 208 results. Next