cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A000686 Number of 4-colored labeled graphs on n nodes, divided by 4.

Original entry on oeis.org

1, 7, 85, 1777, 63601, 3882817, 403308865, 71139019777, 21276992674561, 10778161937857537, 9238819435213784065, 13390649605615389843457, 32796747486424209782108161, 135669064080920007649863745537, 947468281528010179181982467702785, 11166618111585805201637975219611631617
Offset: 1

Views

Author

Keywords

Comments

Sequence represents 1/4 of the number of 4-colored labeled graphs on n nodes. Indeed, on p. 413 of the Read paper, column 4 is 4, 28, 340, 7108, ... - Emeric Deutsch, May 06 2004

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; a[n_] := 1/4*Sum[ Binomial[n, k]*2^(k*(n-k))*b[k], {k, 0, n}]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)
  • PARI
    N=66;  x='x+O('x^N);
    E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
    tgf=E^4-1;  v=Vec(tgf);
    v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) ) / 4
    /* Joerg Arndt, Apr 10 2013 */

Formula

a(n) = (1/4)*Sum_{k=0..n} binomial(n, k)*2^(k(n-k))*b(k), where b(0)=1 and b(k) = 3*A000685(k) for k > 0. - Emeric Deutsch, May 06 2004
From Peter Bala, Apr 12 2013: (Start)
a(n) = (1/4)*A223887(n).
a(n) = (1/4)*Sum_{k = 0..n} binomial(n,k)*2^(k*(n-k))*b(k)*b(n-k), where b(n) := Sum_{k = 0..n} binomial(n,k)*2^(k*(n-k)).
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is (1/4)*(E(x)^4 - 1) = Sum_{n >= 0} a(n)*x^n/(n!*2^C(n,2)) = x + 7*x^2/(2!*2) + 85*x^3/(3!*2^3) + .... (End)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com) and Emeric Deutsch, May 05 2004

A001226 Lerch's function q_2(n) = (2^{phi(t)} - 1)/t where t = 2*n - 1.

Original entry on oeis.org

1, 1, 3, 9, 7, 93, 315, 17, 3855, 13797, 195, 182361, 41943, 9709, 9256395, 34636833, 31775, 479349, 1857283155, 430185, 26817356775, 102280151421, 372827, 1497207322929, 89756051247, 84215045, 84973577874915, 19991120505, 1205604855, 4885260612740877
Offset: 1

Views

Author

Keywords

Comments

Lerch defines q_u = (u^phi(p) - 1)/p for any odd integer p and for u prime to p. - Altug Alkan, Dec 19 2017

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 109.

Crossrefs

Cf. A000010.

Programs

  • Mathematica
    Table[(2^EulerPhi[n] - 1)/n, {n, 1, 40, 2}] (* T. D. Noe, Jun 26 2012 *)
  • PARI
    a(n) = (2^eulerphi(2*n-1) - 1)/(2*n-1) \\ Andrew Howroyd, Dec 18 2017

A193198 G.f.: A(x) = Sum_{n>=0} x^n/(1 - 3^n*x)^n.

Original entry on oeis.org

1, 1, 4, 28, 352, 7696, 296704, 19845568, 2325071872, 472050401536, 167325747134464, 102717666720160768, 109887628080679616512, 203517277347030338768896, 656102983404750860283019264, 3660938644168893995628877692928
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 352*x^4 + 7696*x^5 +...
where:
A(x) = 1 + x/(1-3*x) + x^2/(1-9*x)^2 + x^3/(1-27*x)^3 + x^4/(1-81*x)^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1);A=1+sum(m=1,n,x^m/(1-3^m*x +x*O(x^n))^m);polcoeff(A,n)}
    
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*3^(k*(n-k))))}

Formula

a(n) = Sum_{k=0..n-1} binomial(n-1,k)*3^(k*(n-k)) for n>0 with a(0)=1.

A000222 Coefficients of ménage hit polynomials.

Original entry on oeis.org

0, 0, 1, 3, 6, 38, 213, 1479, 11692, 104364, 1036809, 11344859, 135548466, 1755739218, 24504637741, 366596136399, 5852040379224, 99283915922264, 1783921946910417, 33840669046326579, 675849838112277598, 14174636583759324798
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A058057.

Programs

  • Mathematica
    max = 30; f[x_, y_] := Sum[n!*((x*y)^n/(1+x*(y-1))^(2*n+1)), {n, 0, max}]; t = MapIndexed[Take[#1, First[#2]]&, CoefficientList[Series[f[x, y], {x, 0, max}, {y, 0, max}], {x, y}]] ; a[0] = a[1] = 0; a[n_] := t[[n+1, n-1]]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Mar 11 2014, after Vladeta Jovovic *)

Formula

a(n) ~ 2/exp(2) * n!. - Vaclav Kotesovec, Sep 06 2014
a(n)+2*a(n+p)+a(n+2*p) is divisible by p for any prime p. - Mark van Hoeij, Jun 13 2019

A002537 a(2n) = a(2n-1) + 3a(2n-2), a(2n+1) = 2a(2n) + 3a(2n-1).

Original entry on oeis.org

1, 1, 4, 11, 23, 79, 148, 533, 977, 3553, 6484, 23627, 43079, 157039, 286276, 1043669, 1902497, 6936001, 12643492, 46094987, 84025463, 306335887, 558412276, 2035832213, 3711069041, 13529634721, 24662841844, 89914587851
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Programs

  • Maple
    A002537:=(1+z-4*z**2+3*z**3)/(1-8*z**2+9*z**4); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{0,8,0,-9},{1,1,4,11},40] (* Harvey P. Dale, Jul 24 2012 *)

Formula

a(n)=8a(n-2)-9a(n-4). - Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003
G.f.: (1+x-4x^2+3x^3)/(1-8x^2+9x^4). a(n)/A002536(n) converges to sqrt(7). - Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003
a(n+1) = x^n + (-1)^n*(x-2)^n where x = (1+sqrt(7)) and the term is divided by 2 for a(2) and a(3), 4 for a(4) and a(5)... 2^n for a(2n) and a(2n+1). - Ben Paul Thurston, Aug 30 2006

Extensions

More terms from James Sellers, Sep 08 2000

A000450 Coefficients of ménage hit polynomials.

Original entry on oeis.org

1, 10, 50, 385, 3130, 28764, 291900, 3249210, 39367395, 515874470, 7270929806, 109691447395, 1763782644020, 30114243100760, 544123405603800, 10373304279494964, 208092476689208805, 4381794437494059810, 96635643877147885450, 2227562535558247510885
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A058057.

Programs

  • Mathematica
    max = 23; f[x_, y_] := Sum[n!*((x*y)^n/(1 + x*(y-1))^(2*n+1)), {n, 0, max} ]; t = MapIndexed[Take[#1, #2[[1]]]&, CoefficientList[Series[f[x, y], {x, 0, max}, {y, 0, max}], {x, y}]]; a[n_] := t[[n+1, n-3]]; Table[a[n], {n, 4, max}] (* Jean-François Alcover, Feb 08 2016, after Vladeta Jovovic in A058057 *)

A360704 Expansion of Sum_{k>=0} (x * (1 + 2^k * x))^k.

Original entry on oeis.org

1, 1, 3, 9, 41, 257, 2209, 27009, 455553, 10831873, 360452609, 16786663425, 1102243190785, 101146710556673, 13109796072955905, 2379217548538511361, 609386444958743363585, 219178211386515281412097, 111098724276069341895720961, 79284929294467154275606200321
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+2^k*x))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, 2^(k*(n-k))*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} 2^(k*(n-k)) * binomial(n-k,k).

A006536 Switching classes of digraphs.

Original entry on oeis.org

2, 6, 38, 684, 50224, 13946352, 14061131152, 50947324188128, 666754350781269760, 31763991166456912086656, 5550343429517595744902558208, 3581353054755185129132443153728000
Offset: 1

Views

Author

Keywords

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Vladeta Jovovic, Jul 22 2000
Previous Showing 21-28 of 28 results.