cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 199 results. Next

A328594 Numbers whose binary expansion is aperiodic.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2019

Keywords

Comments

A finite sequence is aperiodic if all of its cyclic rotations are distinct. See A000740 or A027375 for details.
Also numbers k such that the k-th composition in standard order is aperiodic. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. - Gus Wiseman, Apr 28 2020

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
   0:     0 ~ {}
   1:     1 ~ {1}
   2:    10 ~ {2}
   4:   100 ~ {3}
   5:   101 ~ {1,3}
   6:   110 ~ {2,3}
   8:  1000 ~ {4}
   9:  1001 ~ {1,4}
  11:  1011 ~ {1,2,4}
  12:  1100 ~ {3,4}
  13:  1101 ~ {1,3,4}
  14:  1110 ~ {2,3,4}
  16: 10000 ~ {5}
  17: 10001 ~ {1,5}
  18: 10010 ~ {2,5}
  19: 10011 ~ {1,2,5}
  20: 10100 ~ {3,5}
  21: 10101 ~ {1,3,5}
  22: 10110 ~ {2,3,5}
  23: 10111 ~ {1,2,3,5}
  24: 11000 ~ {4,5}
		

Crossrefs

The complement is A121016.
The version for prime indices is A085971.
Numbers without proper integer roots are A007916.
Necklaces are A328595.
Lyndon words are A328596.
Aperiodic compositions are A000740.
Aperiodic binary sequences are A027375.

Programs

  • Mathematica
    aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    Select[Range[0,100],aperQ[IntegerDigits[#,2]]&]

A329744 Triangle read by rows where T(n,k) is the number of compositions of n > 0 with runs-resistance k, 0 <= k <= n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 1, 6, 6, 2, 1, 3, 15, 9, 4, 0, 1, 1, 22, 22, 16, 2, 0, 1, 3, 41, 38, 37, 8, 0, 0, 1, 2, 72, 69, 86, 26, 0, 0, 0, 1, 3, 129, 124, 175, 78, 2, 0, 0, 0, 1, 1, 213, 226, 367, 202, 14, 0, 0, 0, 0, 1, 5, 395, 376, 750, 469, 52, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Triangle begins:
   1
   1   1
   1   1   2
   1   2   3   2
   1   1   6   6   2
   1   3  15   9   4   0
   1   1  22  22  16   2   0
   1   3  41  38  37   8   0   0
   1   2  72  69  86  26   0   0   0
   1   3 129 124 175  78   2   0   0   0
   1   1 213 226 367 202  14   0   0   0   0
   1   5 395 376 750 469  52   0   0   0   0   0
Row n = 6 counts the following compositions:
  (6)  (33)      (15)    (114)    (1131)
       (222)     (24)    (411)    (1311)
       (111111)  (42)    (1113)   (11121)
                 (51)    (1221)   (12111)
                 (123)   (2112)
                 (132)   (3111)
                 (141)   (11112)
                 (213)   (11211)
                 (231)   (21111)
                 (312)
                 (321)
                 (1122)
                 (1212)
                 (2121)
                 (2211)
		

Crossrefs

Row sums are A000079.
Column k = 1 is A032741.
Column k = 2 is A329745.
Column k = n - 2 is A329743.
The version for partitions is A329746.
The version with rows reversed is A329750.

Programs

  • Mathematica
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==k&]],{n,10},{k,0,n-1}]

A325545 Number of compositions of n with distinct differences.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 17, 34, 59, 105, 166, 279, 442, 730, 1157, 1927, 3045, 4741, 7527, 11667, 18048, 27928, 43334, 65861, 101385, 153404, 232287, 347643, 523721, 780083, 1165331, 1725966, 2561625, 3773838, 5561577, 8151209, 11920717, 17364461, 25269939, 36635775
Offset: 0

Views

Author

Gus Wiseman, May 10 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(6) = 17 compositions:
  (1)  (2)   (3)   (4)    (5)     (6)
       (11)  (12)  (13)   (14)    (15)
             (21)  (22)   (23)    (24)
                   (31)   (32)    (33)
                   (112)  (41)    (42)
                   (121)  (113)   (51)
                   (211)  (122)   (114)
                          (131)   (132)
                          (212)   (141)
                          (221)   (213)
                          (311)   (231)
                          (1121)  (312)
                          (1211)  (411)
                                  (1131)
                                  (1221)
                                  (1311)
                                  (2112)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Differences[#]&]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, May 11 2019

A101268 Number of compositions of n into pairwise relatively prime parts.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 22, 38, 63, 101, 160, 254, 403, 635, 984, 1492, 2225, 3281, 4814, 7044, 10271, 14889, 21416, 30586, 43401, 61205, 85748, 119296, 164835, 226423, 309664, 422302, 574827, 781237, 1060182, 1436368, 1942589, 2622079, 3531152, 4742316, 6348411
Offset: 0

Views

Author

Vladeta Jovovic, Dec 18 2004

Keywords

Comments

Here a singleton is always considered pairwise relatively prime. Compare to A337462. - Gus Wiseman, Oct 18 2020

Examples

			From _Gus Wiseman_, Oct 18 2020: (Start)
The a(1) = 1 through a(5) = 13 compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (31)    (23)
             (111)  (112)   (32)
                    (121)   (41)
                    (211)   (113)
                    (1111)  (131)
                            (311)
                            (1112)
                            (1121)
                            (1211)
                            (2111)
                            (11111)
(End)
		

Crossrefs

Row sums of A282748.
A051424 is the unordered version, with strict case A007360.
A335235 ranks these compositions.
A337461 counts these compositions of length 3, with unordered version A307719 and unordered strict version A220377.
A337462 does not consider a singleton to be coprime unless it is (1), with strict version A337561.
A337562 is the strict case.
A337664 looks only at distinct parts, with non-constant version A337665.
A000740 counts relatively prime compositions, with strict case A332004.
A178472 counts compositions with a common factor.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]<=1||CoprimeQ@@#&]],{n,0,10}] (* Gus Wiseman, Oct 18 2020 *)

Formula

It seems that no formula is known.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 14 2017

A303386 Number of aperiodic factorizations of n > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 7, 1, 2, 2, 4, 1, 5, 1, 6, 2, 2, 2, 7, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 1, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 3, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 7, 1, 5, 1, 7, 5
Offset: 2

Views

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

An aperiodic factorization of n is a finite multiset of positive integers greater than 1 whose product is n and whose multiplicities are relatively prime.

Examples

			The a(36) = 7 aperiodic factorizations are (2*2*9), (2*3*6), (2*18), (3*3*4), (3*12), (4*9), and (36). Missing from this list are (2*2*3*3) and (6*6).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],GCD@@Length/@Split[#]===1&]],{n,2,100}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A303386(n) = if(1==n,n,my(r); sumdiv(A052409(n),d, ispower(n,d,&r); moebius(d)*A001055(r))); \\ Antti Karttunen, Sep 25 2018

Formula

a(n) = Sum_{d|A052409(n)} mu(d) * A001055(n^(1/d)), where mu = A008683.

Extensions

More terms from Antti Karttunen, Sep 25 2018

A351013 Number of integer compositions of n with all distinct runs.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 48, 88, 161, 294, 512, 970, 1634, 2954, 5156, 9119, 15618, 27354, 46674, 80130, 138078, 232286, 394966, 665552, 1123231, 1869714, 3146410, 5186556, 8620936, 14324366, 23529274, 38564554, 63246744, 103578914, 167860584, 274465845
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 14 compositions:
  (1)  (2)    (3)      (4)        (5)
       (1,1)  (1,2)    (1,3)      (1,4)
              (2,1)    (2,2)      (2,3)
              (1,1,1)  (3,1)      (3,2)
                       (1,1,2)    (4,1)
                       (2,1,1)    (1,1,3)
                       (1,1,1,1)  (1,2,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
For example, the composition c = (3,1,1,1,1,2,1,1,3,4,1,1) has runs (3), (1,1,1,1), (2), (1,1), (3), (4), (1,1), and since (3) and (1,1) both appear twice, c is not counted under a(20).
		

Crossrefs

The version for run-lengths instead of runs is A329739, normal A329740.
These compositions are ranked by A351290, complement A351291.
A000005 counts constant compositions, ranked by A272919.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A059966 counts binary Lyndon compositions, necklaces A008965, aperiodic A000740.
A116608 counts compositions by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329744 counts compositions by runs-resistance.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Split[#]&]],{n,0,10}]
  • PARI
    \\ here LahI is A111596 as row polynomials.
    LahI(n,y) = {sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
    S(n) = {my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p,i,y)*LahI(i,y))}
    seq(n)={my(q=S(n)); [subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, subst(q + O(x*x^(n\k)), x, x^k)))]} \\ Andrew Howroyd, Feb 12 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 12 2022

A328595 Numbers whose reversed binary expansion is a necklace.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 48, 52, 54, 56, 58, 60, 62, 63, 64, 72, 80, 84, 88, 92, 96, 100, 104, 106, 108, 112, 116, 118, 120, 122, 124, 126, 127, 128, 136, 144, 152, 160, 164, 168, 170, 172, 176, 180
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2019

Keywords

Comments

A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
   1:      1 ~ {1}
   2:     10 ~ {2}
   3:     11 ~ {1,2}
   4:    100 ~ {3}
   6:    110 ~ {2,3}
   7:    111 ~ {1,2,3}
   8:   1000 ~ {4}
  10:   1010 ~ {2,4}
  12:   1100 ~ {3,4}
  14:   1110 ~ {2,3,4}
  15:   1111 ~ {1,2,3,4}
  16:  10000 ~ {5}
  20:  10100 ~ {3,5}
  24:  11000 ~ {4,5}
  26:  11010 ~ {2,4,5}
  28:  11100 ~ {3,4,5}
  30:  11110 ~ {2,3,4,5}
  31:  11111 ~ {1,2,3,4,5}
  32: 100000 ~ {6}
  36: 100100 ~ {3,6}
		

Crossrefs

A similar concept is A065609.
The version with the most significant digit ignored is A328607.
Lyndon words are A328596.
Aperiodic words are A328594.
Binary necklaces are A000031.
Necklace compositions are A008965.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Select[Range[100],neckQ[Reverse[IntegerDigits[#,2]]]&]
  • Python
    from itertools import count, islice
    from sympy.utilities.iterables import necklaces
    def a_gen():
        for n in count(1):
            t = []
            for i in necklaces(n,2):
                if sum(i)>0:
                    t.append(sum(2**j for j in range(len(i)) if i[j] > 0))
            yield from sorted(t)
    A328595_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, May 24 2024

A301700 Number of aperiodic rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 21, 52, 120, 290, 697, 1713, 4200, 10446, 26053, 65473, 165257, 419357, 1068239, 2732509, 7013242, 18059960, 46641983, 120790324, 313593621, 816046050, 2128101601, 5560829666, 14557746453, 38177226541, 100281484375, 263815322761, 695027102020
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

An unlabeled rooted tree is aperiodic if the multiset of branches of the root is an aperiodic multiset, meaning it has relatively prime multiplicities, and each branch is also aperiodic.

Examples

			The a(6) = 10 aperiodic trees are (((((o))))), (((o(o)))), ((o((o)))), ((oo(o))), (o(((o)))), (o(o(o))), ((o)((o))), (oo((o))), (o(o)(o)), (ooo(o)).
		

Crossrefs

Programs

  • Mathematica
    arut[n_]:=arut[n]=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[arut/@c]],GCD@@Length/@Split[#]===1&]]/@IntegerPartitions[n-1]];
    Table[Length[arut[n]],{n,20}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    MoebiusT(v)={vector(#v, n, sumdiv(n,d,moebius(n/d)*v[d]))}
    seq(n)={my(v=[1]); for(n=2, n, v=concat([1], MoebiusT(EulerT(v)))); v} \\ Andrew Howroyd, Sep 01 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 01 2018

A178472 Number of compositions (ordered partitions) of n where the gcd of the part sizes is not 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 8, 4, 17, 1, 38, 1, 65, 19, 128, 1, 284, 1, 518, 67, 1025, 1, 2168, 16, 4097, 256, 8198, 1, 16907, 1, 32768, 1027, 65537, 79, 133088, 1, 262145, 4099, 524408, 1, 1056731, 1, 2097158, 16636, 4194305, 1, 8421248, 64, 16777712, 65539
Offset: 1

Views

Author

Keywords

Comments

Of course, all part sizes must be greater than 1; that condition alone gives the Fibonacci numbers, which is thus an upper bound.
Also the number of periodic compositions of n, where a sequence is periodic if its cyclic rotations are not all different. Also compositions with non-relatively prime run-lengths. - Gus Wiseman, Nov 10 2019

Examples

			For n=6, we have 5 compositions: <6>, <4,2>, <2,4>, <2,2,2>, and <3,3>.
From _Gus Wiseman_, Nov 10 2019: (Start)
The a(2) = 1 through a(9) = 4 non-relatively prime compositions:
  (2)  (3)  (4)    (5)  (6)      (7)  (8)        (9)
            (2,2)       (2,4)         (2,6)      (3,6)
                        (3,3)         (4,4)      (6,3)
                        (4,2)         (6,2)      (3,3,3)
                        (2,2,2)       (2,2,4)
                                      (2,4,2)
                                      (4,2,2)
                                      (2,2,2,2)
The a(2) = 1 through a(9) = 4 periodic compositions:
  11  111  22    11111  33      1111111  44        333
           1111         222              1313      121212
                        1212             2222      212121
                        2121             3131      111111111
                        111111           112112
                                         121121
                                         211211
                                         11111111
The a(2) = 1 through a(9) = 4 compositions with non-relatively prime run-lengths:
  11  111  22    11111  33      1111111  44        333
           1111         222              1133      111222
                        1122             2222      222111
                        2211             3311      111111111
                        111111           111122
                                         112211
                                         221111
                                         11111111
(End)
		

Crossrefs

Periodic binary words are A152061.

Programs

  • Maple
    A178472 := n -> (2^n - add(mobius(n/d)*2^d, d in divisors(n)))/2:
    seq(A178472(n), n=1..51); # Peter Luschny, Jan 21 2018
  • Mathematica
    Table[2^(n - 1) - DivisorSum[n, MoebiusMu[n/#]*2^(# - 1) &], {n, 51}] (* Michael De Vlieger, Jan 20 2018 *)
  • PARI
    vector(60,n,2^(n-1)-sumdiv(n,d,2^(d-1)*moebius(n/d)))
    
  • Python
    from sympy import mobius, divisors
    def A178472(n): return -sum(mobius(n//d)<Chai Wah Wu, Sep 21 2024

Formula

a(n) = Sum_{d|n & d
a(n) = 2^(n-1) - A000740(n).
a(n) = A152061(n)/2. - George Beck, Jan 20 2018
a(p) = 1 for p prime. - Chai Wah Wu, Sep 21 2024

Extensions

Ambiguous term a(0) removed by Max Alekseyev, Jan 02 2012

A303431 Aperiodic tree numbers. Matula-Goebel numbers of aperiodic rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 12, 13, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 37, 39, 40, 41, 44, 45, 47, 48, 50, 52, 54, 55, 58, 60, 61, 62, 65, 66, 71, 72, 74, 75, 78, 79, 80, 82, 87, 88, 89, 90, 93, 94, 96, 99, 101, 104, 108, 109, 110, 111, 113, 116, 117, 120, 122
Offset: 1

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

A positive integer is an aperiodic tree number iff either it is equal to 1 or it belongs to A007916 (numbers that are not perfect powers, or numbers whose prime multiplicities are relatively prime) and all of its prime indices are also aperiodic tree numbers, where a prime index of n is a number m such that prime(m) divides n.

Examples

			Sequence of aperiodic rooted trees begins:
01 o
02 (o)
03 ((o))
05 (((o)))
06 (o(o))
10 (o((o)))
11 ((((o))))
12 (oo(o))
13 ((o(o)))
15 ((o)((o)))
18 (o(o)(o))
20 (oo((o)))
22 (o(((o))))
24 (ooo(o))
26 (o(o(o)))
29 ((o((o))))
30 (o(o)((o)))
31 (((((o)))))
33 ((o)(((o))))
		

Programs

  • Mathematica
    zapQ[1]:=True;zapQ[n_]:=And[GCD@@FactorInteger[n][[All,2]]===1,And@@zapQ/@PrimePi/@FactorInteger[n][[All,1]]];
    Select[Range[100],zapQ]
Previous Showing 11-20 of 199 results. Next