A329739 Number of compositions of n whose run-lengths are all different.
1, 1, 2, 2, 5, 8, 10, 20, 28, 41, 62, 102, 124, 208, 278, 426, 571, 872, 1158, 1718, 2306, 3304, 4402, 6286, 8446, 11725, 15644, 21642, 28636, 38956, 52296, 70106, 93224, 124758, 165266, 218916, 290583, 381706, 503174, 659160, 865020, 1124458, 1473912, 1907298
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 20 compositions: (1) (2) (3) (4) (5) (6) (7) (11) (111) (22) (113) (33) (115) (112) (122) (114) (133) (211) (221) (222) (223) (1111) (311) (411) (322) (1112) (1113) (331) (2111) (3111) (511) (11111) (11112) (1114) (21111) (1222) (111111) (2221) (4111) (11113) (11122) (22111) (31111) (111112) (111211) (112111) (211111) (1111111)
Crossrefs
The normal case is A329740.
The case of partitions is A098859.
Strict compositions are A032020.
Compositions with relatively prime run-lengths are A000740.
Compositions with distinct multiplicities are A242882.
Compositions with distinct differences are A325545.
Compositions with equal run-lengths are A329738.
Compositions with normal run-lengths are A329766.
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Length/@Split[#]&]],{n,0,10}]
Extensions
a(21)-a(26) from Giovanni Resta, Nov 22 2019
a(27)-a(43) from Alois P. Heinz, Jul 06 2020
Comments