cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A008293 Triangle of coefficients in expansion of D^n (tan x) in powers of tan x.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 8, 6, 16, 40, 24, 16, 136, 240, 120, 272, 1232, 1680, 720, 272, 3968, 12096, 13440, 5040, 7936, 56320, 129024, 120960, 40320, 7936, 176896, 814080, 1491840, 1209600, 362880, 353792, 3610112, 12207360, 18627840, 13305600, 3628800
Offset: 0

Views

Author

Keywords

Comments

James Gregory calculated the first eight rows of this table (with some numerical errors) in 1671. See Roy, p. 299. - Peter Bala, Sep 06 2016

Examples

			From _Peter Bala_, Sep 06 2016: (Start)
Table begins
    1
    1     1
    2     2
    2     8      6
   16    40     24
   16   136    240    120
  272  1232   1680    720
  272  3968  12096  13440  5040
  ...
D(tan(x)) = 1 + tan(x)^2.
D^2(tan(x)) = 2*tan(x) + 2*tan(x)^3.
D^3(tan(x)) = 2 + 8*tan(x)^2 + 6*tan(x)^4.
D^4(tan(x)) = 16*tan(x) + 40*tan(x)^3 + 24*tan(x)^5. (End)
		

Crossrefs

Cf. A008294. Other versions of same triangle: A101343, A155100.
T(n,ceiling(n/2)) gives A000142.
Bisection of column k=0 gives A000182.
Row sums give A000831.

Programs

  • Mathematica
    row[n_] := CoefficientList[ D[Tan[x], {x, n}] /. Tan -> Identity /. Sec -> Function[Sqrt[1 + #^2]], x] // DeleteCases[#, 0]&; Table[row[n], {n, 0, 10}] // Flatten // Prepend[#, 1] & (* Jean-François Alcover, Apr 05 2013 *)
    T[ n_, k_] := If[n<1, Boole[n==0 && k==1], (k-1)*T[n-1, k-1] + (k+1)*T[n-1, k+1]]; (* Michael Somos, Jul 08 2024 *)
  • PARI
    {T(n, k) = if(n<1, n==0 && k==1, (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1))}; /* Michael Somos, Jul 08 2024 */

Formula

T(0, k) = delta(1, k), T(n, k) = (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1).

A258970 E.g.f.: A'(x) = 1 + A(x)^4, with A(0)=1.

Original entry on oeis.org

1, 2, 8, 80, 1088, 19328, 422912, 10987520, 330555392, 11300913152, 432717037568, 18344259092480, 852932666851328, 43157160112160768, 2360748463307620352, 138821061188696145920, 8732741520836633034752, 585172975239737913638912, 41612642758392039581155328
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 15 2015

Keywords

Examples

			A(x) = 1 + 2*x + 8*x^2/2! + 80*x^3/3! + 1088*x^4/4! + 19328*x^5/5! + ...
A'(x) = 2 + 8*x + 40*x^2 + 544*x^3/3 + 2416*x^4/3 + 52864*x^5/15 + ...
1 + A(x)^4 = 2 + 8*x + 40*x^2 + 544*x^3/3 + 2416*x^4/3 + 52864*x^5/15 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k, {k,0,nmax+1}]; Table[Subscript[a,k]*k!, {k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^4-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]
  • PARI
    {a(n) = local(A=1); A = 1 + serreverse( intformal( 1/(1 + (1+x)^4 +x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2015

Formula

a(n) ~ n! * d^(n+1/3) / (3^(1/3) * GAMMA(1/3) * n^(2/3)), where d = 1 / Sum_{j>=1} (-1)^(j+1)/(4*j-1) = 4*sqrt(2)/(Pi + log(3-2*sqrt(2))) = 4.10260201986929...
E.g.f.: 1 + Series_Reversion( Integral 1/(1 + (1+x)^4) dx ). - Paul D. Hanna, Jun 16 2015

A258971 E.g.f.: A'(x) = 1 + A(x)^5, with A(0)=1.

Original entry on oeis.org

1, 2, 10, 130, 2330, 54770, 1591690, 55065250, 2209888250, 100922263250, 5167670934250, 293215490277250, 18260340583516250, 1238269550334211250, 90824251513716786250, 7164531681653318001250, 604824006980892825496250, 54406894886223009690031250
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 15 2015

Keywords

Comments

In general, for k>1, if e.g.f. satisfies A'(x) = 1 + A(x)^k, with A(0)=1, then a(n) ~ n! * d^(n + 1/(k-1)) / ((k-1)^(1/(k-1)) * Gamma(1/(k-1)) * n^(1-1/(k-1))), where d = 1 / Sum_{j>=1} (-1)^(j+1)/(k*j-1).

Examples

			A(x) = 1 + 2*x + 10*x^2/2! + 130*x^3/3! + 2330*x^4/4! + 54770*x^5/5! + ...
A'(x) = 2 + 10*x + 65*x^2 + 1165*x^3/3 + 27385*x^4/12 + 159169*x^5/12 + ...
1 + A(x)^5 = 2 + 10*x + 65*x^2 + 1165*x^3/3 + 27385*x^4/12 + 159169*x^5/12 + ...
		

Crossrefs

Cf. A000831 (k=2), A258969 (k=3), A258970 (k=4), A258994 (k=6), A258925.

Programs

  • Mathematica
    nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k, {k,0,nmax+1}]; Table[Subscript[a,k]*k!, {k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^5-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]
  • PARI
    {a(n) = local(A=1); A = 1 + serreverse( intformal( 1/(1 + (1+x)^5 +x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2015

Formula

a(n) ~ n! * d^(n+1/4) / (4^(1/4) * Gamma(1/4) * n^(3/4)), where d = 1 / Sum_{j>=1} (-1)^(j+1)/(5*j-1) = 40*sqrt(5-sqrt(5)) / (8*sqrt(2)*Pi + sqrt(5+sqrt(5)) * ((9-5*sqrt(5))*log(2) + (sqrt(5)-5)*log(7+3*sqrt(5)))) = 5.53569595526739362969262739469167643400611216649309306882558956...
E.g.f.: 1 + Series_Reversion( Integral 1/(1 + (1+x)^5) dx ). - Paul D. Hanna, Jun 16 2015

A000825 Expansion of cos x (1 + sin x ) /cos 2x.

Original entry on oeis.org

1, 1, 3, 8, 57, 256, 2763, 17408, 250737, 2031616, 36581523, 362283008, 7828053417, 91620376576, 2309644635483, 31191159799808, 898621108880097, 13753735117275136, 445777636063460643, 7625476699018231808
Offset: 0

Views

Author

Keywords

Crossrefs

Bisections are A000281 and (1/2) * A012393.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Cos[x] (1+Sin[x])/Cos[2x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 08 2013 *)

Formula

a(n) ~ n! * (sqrt(2) + 1 + (sqrt(2)-1)*(-1)^n) * 4^n / Pi^(n+1). - Vaclav Kotesovec, Jun 01 2015

A101343 Triangle read by rows: nonzero coefficients of the polynomials F_n(x) which express derivatives of tan(z) in terms of powers of tan(z).

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 8, 2, 24, 40, 16, 120, 240, 136, 16, 720, 1680, 1232, 272, 5040, 13440, 12096, 3968, 272, 40320, 120960, 129024, 56320, 7936, 362880, 1209600, 1491840, 814080, 176896, 7936, 3628800, 13305600, 18627840, 12207360, 3610112, 353792
Offset: 0

Views

Author

Don Knuth, Jan 28 2005

Keywords

Comments

Interpolates between factorials and tangent numbers.

Examples

			For example, D tan(z) = (tan(z))^2 + 1.
Array begins:
    1;
    1,   1;
    2,   2,
    6,   8,   2;
   24,  40,  16,
  120, 240, 136,  16;
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 287.

Crossrefs

Reflection of triangle A008293.
Column k=0 gives A000142.
Row sums give A000831.
T(2n-1,n) gives A000182 (for n>=1).

Programs

  • Mathematica
    row[n_] := CoefficientList[ Derivative[n][Tan][z] /. Tan -> t /. Sec -> (Sqrt[1+t[#]^2]&), t[z]] // DeleteCases[#, 0]& // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 26 2013 *)
  • Maxima
    T(n,k):=if k=0 then Tr(n,k) else if 2*k-1=n then Tr(n,k-1) else Tr(n,k)+Tr(n,k-1);
    Tr(n,i):=((sum(binomial(j+n-2*i-1,n-2*i-1)*(j+n-2*i)!*2^(2*i-j)*(-1)^(j-i)*stirling2(n,j+n-2*i),j,0,2*i))); /* Vladimir Kruchinin, May 27 2011 */

Formula

t(n,0)=n!; t(n,k)=tr(n,k)+tr(n,k-1), k<=n/2; t(n,floor((n+1)/2)-1)=tr(n,floor((n+1)/2)-1); tr(n,i)=((sum(j=0..2*i, binomial(j+n-2*i-1,n-2*i-1)*(j+n-2*i)!*2^(2*i-j)*(-1)^(j-i)*Stirling2(n,j+n-2*i)))). - Vladimir Kruchinin, May 27 2011
From Tom Copeland, Sep 30 2015: (Start)
Reversed rows signed and aerated are generated by [(1-x^2)D]^n x with D = d/dx, so exp(t(1-x^2)D) x = tanh(t + atanh(x)) is the e.g.f. of this reversed array (see A145271).
Reversed rows unsigned and aerated are generated by [(1+x^2)D]^n x, so exp(t(1+x^2)D) x = tan(t + atan(x)) = x + (1 +x^2)*t + (2x + 2x^3)*t^2/2! + (2 + 8x^2 + 6x^4)*t^3/3! + (16x + 40x^3 + 24x^5)*t^4/4! + ... is the e.g.f. for the matrix on p. 666 of the Knuth and Buckholtz link.
E.g.f. for this entry's aerated array 1 + (1 + x^2)*t + (2 + 2x^2)*t^2/2! + (6 + 8x^2 + 2x^4)*t^3/3! + (24 + 40^x^2 + 16x^4)*t^4/4! + ... = x * tan(t*x + atan(1/x)). (End)
From Fabián Pereyra, Apr 22 2022: (Start)
T(n,k) = (n-2k)*T(n-1,k) + (n-2k+2)*T(n-1,k-1).
E.g.f.: A(x,t) = sqrt(t)*(sqrt(t)*sin(x*sqrt(t))+cos(x*sqrt(t)))/ (sqrt(t)*cos(x*sqrt(t))-sin(x*sqrt(t))). (End)

Extensions

More terms from Vladeta Jovovic and Ralf Stephan, Jan 30 2005

A000834 Expansion of exp(x)*(1 + tan(x))/(1 - tan(x)).

Original entry on oeis.org

1, 3, 9, 35, 177, 1123, 8569, 76355, 777697, 8911683, 113466729, 1589173475, 24280777617, 401898209443, 7163977596889, 136821894075395, 2787312733887937, 60331585563062403, 1382698089425999049
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    A000834 := exp(x)*(sin(x)+cos(x))/(cos(x)-sin(x)) : for n from 0 to 200 do printf("%d %d ",n,n!*coeftayl(A000834,x=0,n)) ; end: # R. J. Mathar, Nov 19 2006
    A000834 := proc(n) local i; add((-1)^(i*(i-1)/2)*4^i*binomial(n,i)*(euler(i,1/2)+euler(i,1)),i=0...n)-1 end; # Peter Luschny, Nov 25 2010
  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x] (1+Tan[x])/(1-Tan[x]), {x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Sep 08 2011 *)

Formula

a(n) = Sum_{i=0..n} binomial(n,i)*A000831(n-i). - R. J. Mathar, Nov 19 2006
a(n) := -1 + Sum_{i=0...n} ((-1)^(i(i-1)/2) 4^i C(n,i)(E_{i}(1/2) + E_{i}(1))), where E_{n}(x) are Euler polynomials. - Peter Luschny, Nov 25 2010
G.f.: G(0)*2*x/(1 - x)/(1 - 3*x) + 1/(1 - x), where G(k) = 1 - 2*x^2*(k+1)*(k+2)/(2*x^2*(k+1)*(k+2) - (2*x*k + 3*x - 1)*(2*x*k + 5*x - 1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 24 2014
a(n) ~ n! * exp(Pi/4) * 2^(2*n+2) / Pi^(n+1). - Vaclav Kotesovec, Jul 02 2015

A054942 Number of connected oriented graphs on n nodes with an even number of edges.

Original entry on oeis.org

1, 0, 12, 304, 27664, 6990848, 5179182272, 11396324423680, 74944172893348096, 1476405354971703541760, 87208352627656970763963392, 15450530398306943408624578330624, 8211400756816955708062672329408385024
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

  • Magma
    m:=30;
    f:= func< x | (&+[3^Binomial(n,2)*x^n/Factorial(n) : n in [0..m+3]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( Log(f(x)*(Cos(x) + Sin(x)))/2 ))); // G. C. Greubel, Apr 29 2023
    
  • Mathematica
    nn = 15; g[z] := Sum[(1 + 2 u)^Binomial[n, 2] z^n/n!, {n, 0, nn}]; Drop[
    Map[Total[#[[1 ;; Binomial[nn, 2] + 1 ;;2]]]&,Range[0,nn]!CoefficientList[
    Series[Log[g[z]], {z, 0, nn}], {z, u}]], 1] (* Geoffrey Critzer, Jul 28 2016 *)
  • PARI
    seq(n)={my(A=O(x*x^n)); Vec(serlaplace(log(sum(k=0, n, 3^binomial(k, 2)*x^k/k!) + A) + log(cos(x + A) + sin(x + A)))/2)} \\ Andrew Howroyd, Sep 10 2018
    
  • SageMath
    m=30
    def f(x): return sum(3^binomial(n,2)*x^n/factorial(n) for n in range(m+4))
    def A054941_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( log(f(x)*(cos(x) + sin(x)))/2 ).egf_to_ogf().list()
    a=A054941_list(40); a[1:] # G. C. Greubel, Apr 29 2023

Formula

a(n) = (A054941(n) - (-1)^n*A000831(n-1))/2. - Andrew Howroyd, Sep 10 2018
E.g.f.: log(f(x)*(cos(x) + sin(x))), where f(x) = Sum_{j >= 0} 3^binomial(j, 2)*x^j/j!. - G. C. Greubel, Apr 29 2023

Extensions

More terms from Vladeta Jovovic, Mar 11 2003

A054943 Number of connected oriented graphs on n nodes with an odd number of edges.

Original entry on oeis.org

0, 2, 8, 320, 27584, 6991360, 5179178368, 11396324458496, 74944172892993536, 1476405354971707604992, 87208352627656970712229888, 15450530398306943408625302896640, 8211400756816955708062672318337859584
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 15; g[z] :=Sum[(1 + 2 u)^Binomial[n, 2] z^n/n!, {n, 0, nn}]; Drop[
    Map[Total[#[[2 ;; Binomial[nn, 2] + 1 ;;2]]]&,Range[0,nn]!CoefficientList[
    Series[Log[g[z]], {z, 0, nn}], {z, u}]], 1] (* Geoffrey Critzer, Jul 28 2016 *)
  • PARI
    seq(n)={my(A=O(x*x^n)); Vec(serlaplace(log(sum(k=0, n, 3^binomial(k, 2)*x^k/k!) + A) - log(cos(x + A) + sin(x + A)))/2, -n)} \\ Andrew Howroyd, Sep 10 2018

Formula

a(n) = (A054941(n) + (-1)^n*A000831(n-1))/2. - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 11 2003

A253165 a(n) = (-1)^n*2^(6*n+3)*(zeta(-2*n-1,1/2) - zeta(-2*n-1,1)), where zeta(a,z) is the generalized Riemann zeta function.

Original entry on oeis.org

1, 8, 256, 17408, 2031616, 362283008, 91620376576, 31191159799808, 13753735117275136, 7625476699018231808, 5192022022552652087296, 4258996468871236847403008, 4142655008190840426050093056, 4714505177821257067736657297408, 6206008749802659037752564348092416
Offset: 0

Views

Author

Peter Luschny, Mar 11 2015

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*2^(6*n+3)*(Zeta(0,-2*n-1,1/2)-Zeta(0,-2*n-1, 1)):
    seq(a(n), n=0..14);
  • Mathematica
    f[n_] := (-1)^n*2^(6 n + 3) (Zeta[-2 n - 1, 1/2] - Zeta[-2 n - 1, 1]); Array[f, 15, 0] (* Robert G. Wilson v, Mar 11 2015 *)
    max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 1 - 4*x*(k+1)*(k+2)/(4*x*(k+1)*(k+2) - 1/g[k+1]); gf = g[0]; CoefficientList[Series[gf, {x, 0, max}], x] (* Vaclav Kotesovec, Jun 01 2015, after Sergei N. Gladkovskii *)

Formula

a(n) = (-1)^n*2^(4*n+1)*(E(2*n+1,1/2)-E(2*n+1,0)), where E(n,x) are the Euler polynomials.
a(n) = A000825(2*n+1).
a(n) = A000828(2*n+1).
a(n) = A000831(2*n+1)/2.
a(n) = A012393(n+1)/2.
G.f.: S(0), where S(k)= 1 - 4*x*(k+1)*(k+2)/(4*x*(k+1)*(k+2) - 1/S(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 28 2015
a(n) ~ (2*n+1)! * 2^(4*n+3) / Pi^(2*n+2). - Vaclav Kotesovec, Jun 01 2015

A334317 Expansion of e.g.f. tan(Pi/3 + x*sqrt(3)/2) / sqrt(3).

Original entry on oeis.org

1, 2, 6, 30, 198, 1638, 16254, 188190, 2490102, 37067382, 613089486, 11154460590, 221391950598, 4760331408198, 110229346777374, 2734768080189630, 72372319913943702, 2034948511063817622, 60583999401612797166, 1903897439808684195150, 62980420349165187160998
Offset: 0

Views

Author

Michael Somos, Apr 22 2020

Keywords

Comments

If f(x) is the e.g.f. of this sequence, and if x+y+z=0, then f(x)+f(y)+f(z) = 3*f(x)*f(y)*f(z).

Crossrefs

Cf. A000831.

Programs

  • Mathematica
    a[ n_] := If[n < 0, 0, n! SeriesCoefficient[Tan[Pi/3 + Sqrt[3]/2 x]/Sqrt[3], {x, 0, n}]];
    With[{nn=20},CoefficientList[Series[(Tan[Pi/3+x Sqrt[3]/2])/Sqrt[3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 26 2021 *)
  • PARI
    {a(n) = my(s=quadgen(12), A); if(n < 0, 0, A = simplify(tan(s/2*x + x*O(x^n))/s); n! * polcoeff( (1 + A)/(1 - 3*A), n))};
    
  • PARI
    {a(n) = if(n<1, n==0, n<2, 2, n--; 3/2 * sum(k=0, n, binomial(n, k) * a(k) * a(n-k)))};

Formula

E.g.f.: tan(Pi/3 + x*sqrt(3)/2) / sqrt(3).
a(n+1) = (3/2) * Sum_{k=0..n} binomial(n, k) * a(k) * a(n-k), with a(0) = 1, a(1) = 2.
a(n) ~ 2 * n! * 3^((3*n+1)/2) / Pi^(n+1). - Vaclav Kotesovec, Jul 06 2020
Previous Showing 11-20 of 21 results. Next