A008293
Triangle of coefficients in expansion of D^n (tan x) in powers of tan x.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 8, 6, 16, 40, 24, 16, 136, 240, 120, 272, 1232, 1680, 720, 272, 3968, 12096, 13440, 5040, 7936, 56320, 129024, 120960, 40320, 7936, 176896, 814080, 1491840, 1209600, 362880, 353792, 3610112, 12207360, 18627840, 13305600, 3628800
Offset: 0
From _Peter Bala_, Sep 06 2016: (Start)
Table begins
1
1 1
2 2
2 8 6
16 40 24
16 136 240 120
272 1232 1680 720
272 3968 12096 13440 5040
...
D(tan(x)) = 1 + tan(x)^2.
D^2(tan(x)) = 2*tan(x) + 2*tan(x)^3.
D^3(tan(x)) = 2 + 8*tan(x)^2 + 6*tan(x)^4.
D^4(tan(x)) = 16*tan(x) + 40*tan(x)^3 + 24*tan(x)^5. (End)
- Vincenzo Librandi, Table of n, a(n) for n = 0..990
- William Y. C. Chen and Amy M. Fu, The Dumont Ansatz for the Eulerian Polynomials, Peak Polynomials and Derivative Polynomials, arXiv:2204.01497 [math.CO], 2022.
- M.-P. Grosset and A. P. Veselov, Bernoulli numbers and solitons, arXiv:math/0503175 [math.GM], 2005.
- Gordon Haigh, A "natural" approach to Pick's theorem, Math. Gaz. 64 (1980), no. 429, 173-180.
- Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.
- Shi-Mei Ma, Qi Fang, Toufik Mansour, and Yeong-Nan Yeh, Alternating Eulerian polynomials and left peak polynomials, arXiv:2104.09374, 2021
- R. Roy, The Discovery of the Series Formula for Pi by Leibniz, Gregory and Nilakantha, Mathematics Magazine Vol. 63, No. 5 (Dec., 1990), 291-306.
- M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
Bisection of column k=0 gives
A000182.
-
row[n_] := CoefficientList[ D[Tan[x], {x, n}] /. Tan -> Identity /. Sec -> Function[Sqrt[1 + #^2]], x] // DeleteCases[#, 0]&; Table[row[n], {n, 0, 10}] // Flatten // Prepend[#, 1] & (* Jean-François Alcover, Apr 05 2013 *)
T[ n_, k_] := If[n<1, Boole[n==0 && k==1], (k-1)*T[n-1, k-1] + (k+1)*T[n-1, k+1]]; (* Michael Somos, Jul 08 2024 *)
-
{T(n, k) = if(n<1, n==0 && k==1, (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1))}; /* Michael Somos, Jul 08 2024 */
A258970
E.g.f.: A'(x) = 1 + A(x)^4, with A(0)=1.
Original entry on oeis.org
1, 2, 8, 80, 1088, 19328, 422912, 10987520, 330555392, 11300913152, 432717037568, 18344259092480, 852932666851328, 43157160112160768, 2360748463307620352, 138821061188696145920, 8732741520836633034752, 585172975239737913638912, 41612642758392039581155328
Offset: 0
A(x) = 1 + 2*x + 8*x^2/2! + 80*x^3/3! + 1088*x^4/4! + 19328*x^5/5! + ...
A'(x) = 2 + 8*x + 40*x^2 + 544*x^3/3 + 2416*x^4/3 + 52864*x^5/15 + ...
1 + A(x)^4 = 2 + 8*x + 40*x^2 + 544*x^3/3 + 2416*x^4/3 + 52864*x^5/15 + ...
-
nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k, {k,0,nmax+1}]; Table[Subscript[a,k]*k!, {k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^4-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]
-
{a(n) = local(A=1); A = 1 + serreverse( intformal( 1/(1 + (1+x)^4 +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2015
A258971
E.g.f.: A'(x) = 1 + A(x)^5, with A(0)=1.
Original entry on oeis.org
1, 2, 10, 130, 2330, 54770, 1591690, 55065250, 2209888250, 100922263250, 5167670934250, 293215490277250, 18260340583516250, 1238269550334211250, 90824251513716786250, 7164531681653318001250, 604824006980892825496250, 54406894886223009690031250
Offset: 0
A(x) = 1 + 2*x + 10*x^2/2! + 130*x^3/3! + 2330*x^4/4! + 54770*x^5/5! + ...
A'(x) = 2 + 10*x + 65*x^2 + 1165*x^3/3 + 27385*x^4/12 + 159169*x^5/12 + ...
1 + A(x)^5 = 2 + 10*x + 65*x^2 + 1165*x^3/3 + 27385*x^4/12 + 159169*x^5/12 + ...
-
nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k, {k,0,nmax+1}]; Table[Subscript[a,k]*k!, {k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^5-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]
-
{a(n) = local(A=1); A = 1 + serreverse( intformal( 1/(1 + (1+x)^5 +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2015
A000825
Expansion of cos x (1 + sin x ) /cos 2x.
Original entry on oeis.org
1, 1, 3, 8, 57, 256, 2763, 17408, 250737, 2031616, 36581523, 362283008, 7828053417, 91620376576, 2309644635483, 31191159799808, 898621108880097, 13753735117275136, 445777636063460643, 7625476699018231808
Offset: 0
-
With[{nn=20},CoefficientList[Series[Cos[x] (1+Sin[x])/Cos[2x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 08 2013 *)
A101343
Triangle read by rows: nonzero coefficients of the polynomials F_n(x) which express derivatives of tan(z) in terms of powers of tan(z).
Original entry on oeis.org
1, 1, 1, 2, 2, 6, 8, 2, 24, 40, 16, 120, 240, 136, 16, 720, 1680, 1232, 272, 5040, 13440, 12096, 3968, 272, 40320, 120960, 129024, 56320, 7936, 362880, 1209600, 1491840, 814080, 176896, 7936, 3628800, 13305600, 18627840, 12207360, 3610112, 353792
Offset: 0
For example, D tan(z) = (tan(z))^2 + 1.
Array begins:
1;
1, 1;
2, 2,
6, 8, 2;
24, 40, 16,
120, 240, 136, 16;
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 287.
- Alois P. Heinz, Rows n = 0..200, flattened
- Dominique Foata and Guo-Niu Han, Multivariable Tangent and Secant q-derivative Polynomials, 2012. From _N. J. A. Sloane_, Oct 05 2012
- Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.
- Shi-Mei Ma, Qi Fang, Toufik Mansour, and Yeong-Nan Yeh, Alternating Eulerian polynomials and left peak polynomials, arXiv:2104.09374 [math.CO], 2021.
T(2n-1,n) gives
A000182 (for n>=1).
-
row[n_] := CoefficientList[ Derivative[n][Tan][z] /. Tan -> t /. Sec -> (Sqrt[1+t[#]^2]&), t[z]] // DeleteCases[#, 0]& // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 26 2013 *)
-
T(n,k):=if k=0 then Tr(n,k) else if 2*k-1=n then Tr(n,k-1) else Tr(n,k)+Tr(n,k-1);
Tr(n,i):=((sum(binomial(j+n-2*i-1,n-2*i-1)*(j+n-2*i)!*2^(2*i-j)*(-1)^(j-i)*stirling2(n,j+n-2*i),j,0,2*i))); /* Vladimir Kruchinin, May 27 2011 */
A000834
Expansion of exp(x)*(1 + tan(x))/(1 - tan(x)).
Original entry on oeis.org
1, 3, 9, 35, 177, 1123, 8569, 76355, 777697, 8911683, 113466729, 1589173475, 24280777617, 401898209443, 7163977596889, 136821894075395, 2787312733887937, 60331585563062403, 1382698089425999049
Offset: 0
- R. J. Mathar, Table of n, a(n) for n = 0..161
- C. K. Cook, M. R. Bacon, and R. A. Hillman, Higher-order Boustrophedon transforms for certain well-known sequences, Fib. Q., 55(3) (2017), 201-208.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
-
A000834 := exp(x)*(sin(x)+cos(x))/(cos(x)-sin(x)) : for n from 0 to 200 do printf("%d %d ",n,n!*coeftayl(A000834,x=0,n)) ; end: # R. J. Mathar, Nov 19 2006
A000834 := proc(n) local i; add((-1)^(i*(i-1)/2)*4^i*binomial(n,i)*(euler(i,1/2)+euler(i,1)),i=0...n)-1 end; # Peter Luschny, Nov 25 2010
-
With[{nn=20},CoefficientList[Series[Exp[x] (1+Tan[x])/(1-Tan[x]), {x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Sep 08 2011 *)
A054942
Number of connected oriented graphs on n nodes with an even number of edges.
Original entry on oeis.org
1, 0, 12, 304, 27664, 6990848, 5179182272, 11396324423680, 74944172893348096, 1476405354971703541760, 87208352627656970763963392, 15450530398306943408624578330624, 8211400756816955708062672329408385024
Offset: 1
-
m:=30;
f:= func< x | (&+[3^Binomial(n,2)*x^n/Factorial(n) : n in [0..m+3]]) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( Log(f(x)*(Cos(x) + Sin(x)))/2 ))); // G. C. Greubel, Apr 29 2023
-
nn = 15; g[z] := Sum[(1 + 2 u)^Binomial[n, 2] z^n/n!, {n, 0, nn}]; Drop[
Map[Total[#[[1 ;; Binomial[nn, 2] + 1 ;;2]]]&,Range[0,nn]!CoefficientList[
Series[Log[g[z]], {z, 0, nn}], {z, u}]], 1] (* Geoffrey Critzer, Jul 28 2016 *)
-
seq(n)={my(A=O(x*x^n)); Vec(serlaplace(log(sum(k=0, n, 3^binomial(k, 2)*x^k/k!) + A) + log(cos(x + A) + sin(x + A)))/2)} \\ Andrew Howroyd, Sep 10 2018
-
m=30
def f(x): return sum(3^binomial(n,2)*x^n/factorial(n) for n in range(m+4))
def A054941_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(f(x)*(cos(x) + sin(x)))/2 ).egf_to_ogf().list()
a=A054941_list(40); a[1:] # G. C. Greubel, Apr 29 2023
A054943
Number of connected oriented graphs on n nodes with an odd number of edges.
Original entry on oeis.org
0, 2, 8, 320, 27584, 6991360, 5179178368, 11396324458496, 74944172892993536, 1476405354971707604992, 87208352627656970712229888, 15450530398306943408625302896640, 8211400756816955708062672318337859584
Offset: 1
-
nn = 15; g[z] :=Sum[(1 + 2 u)^Binomial[n, 2] z^n/n!, {n, 0, nn}]; Drop[
Map[Total[#[[2 ;; Binomial[nn, 2] + 1 ;;2]]]&,Range[0,nn]!CoefficientList[
Series[Log[g[z]], {z, 0, nn}], {z, u}]], 1] (* Geoffrey Critzer, Jul 28 2016 *)
-
seq(n)={my(A=O(x*x^n)); Vec(serlaplace(log(sum(k=0, n, 3^binomial(k, 2)*x^k/k!) + A) - log(cos(x + A) + sin(x + A)))/2, -n)} \\ Andrew Howroyd, Sep 10 2018
A253165
a(n) = (-1)^n*2^(6*n+3)*(zeta(-2*n-1,1/2) - zeta(-2*n-1,1)), where zeta(a,z) is the generalized Riemann zeta function.
Original entry on oeis.org
1, 8, 256, 17408, 2031616, 362283008, 91620376576, 31191159799808, 13753735117275136, 7625476699018231808, 5192022022552652087296, 4258996468871236847403008, 4142655008190840426050093056, 4714505177821257067736657297408, 6206008749802659037752564348092416
Offset: 0
-
a := n -> (-1)^n*2^(6*n+3)*(Zeta(0,-2*n-1,1/2)-Zeta(0,-2*n-1, 1)):
seq(a(n), n=0..14);
-
f[n_] := (-1)^n*2^(6 n + 3) (Zeta[-2 n - 1, 1/2] - Zeta[-2 n - 1, 1]); Array[f, 15, 0] (* Robert G. Wilson v, Mar 11 2015 *)
max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 1 - 4*x*(k+1)*(k+2)/(4*x*(k+1)*(k+2) - 1/g[k+1]); gf = g[0]; CoefficientList[Series[gf, {x, 0, max}], x] (* Vaclav Kotesovec, Jun 01 2015, after Sergei N. Gladkovskii *)
A334317
Expansion of e.g.f. tan(Pi/3 + x*sqrt(3)/2) / sqrt(3).
Original entry on oeis.org
1, 2, 6, 30, 198, 1638, 16254, 188190, 2490102, 37067382, 613089486, 11154460590, 221391950598, 4760331408198, 110229346777374, 2734768080189630, 72372319913943702, 2034948511063817622, 60583999401612797166, 1903897439808684195150, 62980420349165187160998
Offset: 0
-
a[ n_] := If[n < 0, 0, n! SeriesCoefficient[Tan[Pi/3 + Sqrt[3]/2 x]/Sqrt[3], {x, 0, n}]];
With[{nn=20},CoefficientList[Series[(Tan[Pi/3+x Sqrt[3]/2])/Sqrt[3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 26 2021 *)
-
{a(n) = my(s=quadgen(12), A); if(n < 0, 0, A = simplify(tan(s/2*x + x*O(x^n))/s); n! * polcoeff( (1 + A)/(1 - 3*A), n))};
-
{a(n) = if(n<1, n==0, n<2, 2, n--; 3/2 * sum(k=0, n, binomial(n, k) * a(k) * a(n-k)))};
Comments