cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 265 results. Next

A178470 Number of compositions (ordered partitions) of n where no pair of adjacent part sizes is relatively prime.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 5, 1, 8, 4, 17, 3, 38, 5, 67, 25, 132, 27, 290, 54, 547, 163, 1086, 255, 2277, 530, 4416, 1267, 8850, 2314, 18151, 4737, 35799, 10499, 71776, 20501, 145471, 41934, 289695, 89030, 581117, 178424, 1171545, 365619, 2342563, 761051, 4699711
Offset: 0

Views

Author

Keywords

Comments

A178472(n) is a lower bound for a(n). This bound is exact for n = 2..10 and 12, but falls behind thereafter.
a(0) = 1 vacuously for the empty composition. One could take a(1) = 0, on the theory that each composition is followed by infinitely many 0's, and thus the 1 is not relatively prime to its neighbor; but this definition seems simpler.

Examples

			The three compositions for 11 are <11>, <2,6,3> and <3,6,2>.
From _Gus Wiseman_, Nov 19 2019: (Start)
The a(1) = 1 through a(11) = 3 compositions (A = 10, B = 11):
  1  2  3  4   5  6    7  8     9    A      B
           22     24      26    36   28     263
                  33      44    63   46     362
                  42      62    333  55
                  222     224        64
                          242        82
                          422        226
                          2222       244
                                     262
                                     424
                                     442
                                     622
                                     2224
                                     2242
                                     2422
                                     4222
                                     22222
(End)
		

Crossrefs

The case of partitions is A328187, with Heinz numbers A328336.
Partitions with all pairs of consecutive parts relatively prime are A328172.
Compositions without consecutive divisible parts are A328460 (one way) or A328508 (both ways).

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(n=0, 1,
          add(`if`(h=1 or igcd(j, h)>1, b(n-j, j), 0), j=2..n))
        end:
    a:= n-> `if`(n=1, 1, b(n, 1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 23 2011
  • Mathematica
    b[n_, h_] := b[n, h] = If[n == 0, 1, Sum [If[h == 1 || GCD[j, h] > 1, b[n - j, j], 0], {j, 2, n}]]; a[n_] := If[n == 1, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,y_,_}/;GCD[x,y]==1]&]],{n,0,20}] (* Gus Wiseman, Nov 19 2019 *)
  • PARI
    am(n)=local(r);r=matrix(n,n,i,j,i==j);for(i=2,n,for(j=1,i-1,for(k=1,j,if(gcd(i-j,k)>1,r[i,i-j]+=r[j,k]))));r
    al(n)=local(m);m=am(n);vector(n,i,sum(j=1,i,m[i,j]))

A100471 Number of integer partitions of n whose sequence of frequencies is strictly increasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 8, 11, 13, 18, 20, 27, 32, 40, 44, 60, 67, 82, 93, 114, 129, 161, 175, 209, 239, 285, 315, 372, 416, 484, 545, 631, 698, 811, 890, 1027, 1146, 1304, 1437, 1631, 1805, 2042, 2252, 2539, 2785, 3143, 3439, 3846, 4226, 4722, 5159
Offset: 0

Views

Author

David S. Newman, Nov 21 2004

Keywords

Examples

			a(4) = 4 because of the 5 unrestricted partitions of 4, only one, 3+1 uses each of its summands just once and 1,1 is not an increasing sequence.
From _Gus Wiseman_, Jan 23 2019: (Start)
The a(1) = 1 through a(8) = 11 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (211)   (2111)   (222)     (511)      (422)
                    (1111)  (11111)  (411)     (4111)     (611)
                                     (3111)    (22111)    (2222)
                                     (21111)   (31111)    (5111)
                                     (111111)  (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

Cf. A000219, A000837 (frequencies are relatively prime), A047966 (frequencies are equal), A098859 (frequencies are distinct), A100881, A100882, A100883, A304686 (Heinz numbers of these partitions).

Programs

  • Haskell
    a100471 n = p 0 (n + 1) 1 n where
       p m m' k x | x == 0    = if m < m' || m == 0 then 1 else 0
                  | x < k     = 0
                  | m == 0    = p 1 m' k (x - k) + p 0 m' (k + 1) x
                  | otherwise = p (m + 1) m' k (x - k) +
                                if m < m' then p 0 m (k + 1) x else 0
    -- Reinhard Zumkeller, Dec 27 2012
  • Maple
    b:= proc(n,i,t) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i=1 then `if`(n>t, 1, 0)
        elif i=0 then 0
        else      b(n, i-1, t)
             +add(b(n-i*j, i-1, j), j=t+1..floor(n/i))
          fi
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 21 2011
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n==0, 1, i==1, If[n>t, 1, 0], i == 0, 0 , True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, t+1, Floor[n/i]}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],OrderedQ@*Split]],{n,20}] (* Gus Wiseman, Jan 23 2019 *)

Extensions

Corrected and extended by Vladeta Jovovic, Nov 24 2004
Name edited by Gus Wiseman, Jan 23 2019

A296302 Number of aperiodic compositions of n with relatively prime parts. Number of compositions of n with relatively prime parts and relatively prime run-lengths.

Original entry on oeis.org

1, 0, 2, 5, 14, 24, 62, 114, 249, 480, 1022, 1978, 4094, 8064, 16348, 32520, 65534, 130512, 262142, 523270, 1048444, 2095104, 4194302, 8384316, 16777185, 33546240, 67108356, 134201398, 268435454, 536837136, 1073741822, 2147418240, 4294965244, 8589803520
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2017

Keywords

Examples

			The a(6) = 24 aperiodic compositions with relatively prime parts are:
(15), (51),
(114), (123), (132), (141), (213), (231), (312), (321), (411),
(1113), (1122), (1131), (1221), (1311), (2112), (2211), (3111),
(11112), (11121), (11211), (12111), (21111).
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n,Function[d,MoebiusMu[n/d]*DivisorSum[d,MoebiusMu[#]*2^(d/#-1)&]]],{n,20}]

Formula

a = mu * mu * c, where * is Dirichlet convolution and c(n) = 2^(n-1).

A298748 Heinz numbers of aperiodic (relatively prime multiplicities) integer partitions with relatively prime parts.

Original entry on oeis.org

2, 6, 10, 12, 14, 15, 18, 20, 22, 24, 26, 28, 30, 33, 34, 35, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106, 108, 110, 112, 114
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of partitions begins: (1), (21), (31), (211), (41), (32), (221), (311), (51), (2111), (61), (411), (321), (52), (71), (43), (81), (3111), (421), (511), (322), (91), (21111), (331), (72), (611), (2221), (53), (4111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],With[{t=Transpose[FactorInteger[#]]},And[GCD@@PrimePi/@t[[1]]===1,GCD@@t[[2]]===1]]&] (* Gus Wiseman, Apr 14 2018 *)

A325349 Number of integer partitions of n whose augmented differences are distinct.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 5, 7, 7, 12, 10, 13, 15, 21, 21, 31, 34, 38, 45, 55, 60, 71, 80, 84, 103, 119, 134, 152, 186, 192, 228, 263, 292, 321, 377, 399, 454, 514, 565, 618, 709, 752, 840, 958, 1050, 1140, 1297, 1402, 1568, 1755, 1901, 2080, 2343, 2524, 2758, 3074
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325366.

Examples

			The a(1) = 1 through a(11) = 10 partitions (A = 10, B = 11):
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
            (21)  (22)  (41)  (33)  (43)   (44)   (54)   (55)   (65)
                  (31)        (42)  (52)   (62)   (63)   (64)   (83)
                              (51)  (61)   (71)   (72)   (73)   (92)
                                    (421)  (422)  (81)   (82)   (A1)
                                           (431)  (522)  (91)   (443)
                                           (521)  (621)  (433)  (641)
                                                         (442)  (722)
                                                         (541)  (731)
                                                         (622)  (821)
                                                         (631)
                                                         (721)
For example, (4,4,3) has augmented differences (1,2,3), which are distinct, so (4,4,3) is counted under a(11).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[Append[#,1]]&]],{n,0,30}]

A168532 Triangle read by rows, A054525 * A168021.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 6, 0, 0, 0, 1, 7, 2, 1, 0, 0, 1, 14, 0, 0, 0, 0, 0, 1, 17, 3, 0, 1, 0, 0, 0, 1, 27, 0, 2, 0, 0, 0, 0, 0, 1, 34, 6, 0, 0, 1, 0, 0, 0, 0, 1, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 63, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 28 2009

Keywords

Comments

Row sums = A000041 starting (1, 2, 3, 5, 7, 11, 15, ...).
T(n,k) is the number of partitions of n into parts with GCD = k. - Alois P. Heinz, Jun 06 2013

Examples

			First few rows of the triangle:
    1;
    1,  1;
    2,  0, 1;
    3,  1, 0, 1;
    6,  0, 0, 0, 1;
    7,  2, 1, 0, 0, 1;
   14,  0, 0, 0, 0, 0, 1;
   17,  3, 0, 1, 0, 0, 0, 1;
   27,  0, 2, 0, 0, 0, 0, 0, 1;
   34,  6, 0, 0, 1, 0, 0, 0, 0, 1;
   55,  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
   63,  7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1;
  100,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  119, 14, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1;
  167,  0, 6, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  209, 17, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1;
  296,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A256067 (the same for LCM).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, x,
          b(n, i-1)+(p-> add(coeff(p, x, t)*x^igcd(t, i),
          t=0..degree(p)))(add(b(n-i*j, i-1), j=1..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..17);  # Alois P. Heinz, Mar 29 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i==1, x, b[n, i-1] + Function[{p}, Sum[Coefficient[p, x, t]*x^GCD[t, i], {t, 0, Exponent[p, x]}]][Sum[b[n - i*j, i-1], {j, 1, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n]]; Table[T[n], {n, 1, 17}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

Formula

Mobius transform of triangle A168021 = an infinite lower triangular matrix with aerated variants of A000837 in each column; where A000837 = the Mobius transform of the partition numbers, A000041.

Extensions

Corrected and extended by Alois P. Heinz, Jun 06 2013

A318978 Heinz numbers of integer partitions with a common divisor > 1.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Sep 06 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Is this the same as A305078 without the leading 2? - R. J. Mathar, Sep 08 2018

Examples

			The sequence of all integer partitions with a common divisor begins: (2), (3), (4), (2,2), (5), (6), (7), (8), (4,2), (9), (3,3), (2,2,2), (10), (11), (12), (6,2), (13), (14), (15), (4,4), (16), (8,2), (17), (18), (4,2,2), (6,3), (19), (20), (21), (22), (2,2,2,2), (23), (10,2), (24), (6,4), (25).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],GCD@@PrimePi/@If[#==1,{},FactorInteger[#]][[All,1]]>1&]

A328172 Number of integer partitions of n with all pairs of consecutive parts relatively prime.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 10, 12, 16, 19, 24, 28, 36, 43, 51, 62, 74, 87, 104, 122, 143, 169, 195, 227, 260, 302, 346, 397, 455, 521, 599, 686, 780, 889, 1001, 1138, 1286, 1454, 1638, 1846, 2076, 2330, 2614, 2929, 3280, 3666, 4093, 4565, 5085, 5667, 6300, 7002
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2019

Keywords

Comments

Except for any number of 1's, these partitions must be strict. The fully strict case is A328188.
Partitions with no consecutive pair of parts relatively prime are A328187, with strict case A328220.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (31)    (32)     (51)      (43)       (53)
             (111)  (211)   (41)     (321)     (52)       (71)
                    (1111)  (311)    (411)     (61)       (431)
                            (2111)   (3111)    (511)      (521)
                            (11111)  (21111)   (3211)     (611)
                                     (111111)  (4111)     (5111)
                                               (31111)    (32111)
                                               (211111)   (41111)
                                               (1111111)  (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The case of compositions is A167606.
The strict case is A328188.
The Heinz numbers of these partitions are given by A328335.

Programs

  • Maple
    b:= proc(n, i, s) option remember; `if`(n=0 or i=1, 1,
          `if`(andmap(j-> igcd(i, j)=1, s), b(n-i, min(n-i, i-1),
               numtheory[factorset](i)), 0)+b(n, i-1, s))
        end:
    a:= n-> b(n$2, {}):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 13 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MatchQ[#,{_,x_,y_,_}/;GCD[x,y]>1]&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, s_] := b[n, i, s] = If[n == 0 || i == 1, 1,
         If[AllTrue[s, GCD[i, #] == 1&], b[n - i, Min[n - i, i - 1],
         FactorInteger[i][[All, 1]]], 0] + b[n, i - 1, s]];
    a[n_] := b[n, n, {}];
    a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A023023 Number of partitions of n into 3 unordered relatively prime parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 10, 8, 14, 12, 16, 16, 24, 18, 30, 24, 32, 30, 44, 32, 50, 42, 54, 48, 70, 48, 80, 64, 80, 72, 96, 72, 114, 90, 112, 96, 140, 96, 154, 120, 144, 132, 184, 128, 196, 150, 192, 168, 234, 162, 240, 192, 240, 210, 290, 192, 310, 240, 288, 256, 336, 240, 374
Offset: 3

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Oct 08 2020: (Start)
The a(3) = 1 through a(13) = 14 triples (A = 10, B = 11):
  111   211   221   321   322   332   432   433   443   543   544
              311   411   331   431   441   532   533   552   553
                          421   521   522   541   542   651   643
                          511   611   531   631   551   732   652
                                      621   721   632   741   661
                                      711   811   641   831   733
                                                  722   921   742
                                                  731   A11   751
                                                  821         832
                                                  911         841
                                                              922
                                                              931
                                                              A21
                                                              B11
(End)
		

Crossrefs

A000741 is the ordered version.
A000837 counts these partitions of any length.
A001399(n-3) does not require relative primality.
A023022 is the 2-part version.
A101271 is the strict case.
A284825 counts the case that is also pairwise non-coprime.
A289509 intersected with A014612 gives the Heinz numbers.
A307719 is the pairwise coprime instead of relatively prime version.
A337599 is the pairwise non-coprime instead of relative prime version.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],GCD@@#==1&]],{n,3,50}] (* Gus Wiseman, Oct 08 2020 *)

Formula

G.f. for the number of partitions of n into m unordered relatively prime parts is Sum(moebius(k)*x^(m*k)/Product(1-x^(i*k), i=1..m), k=1..infinity). - Vladeta Jovovic, Dec 21 2004
a(n) = (n^2/12)*Product_{prime p|n} (1 - 1/p^2) = A007434(n)/12 for n > 3 (proved by Mohamed El Bachraoui). [Jonathan Sondow, May 27 2009]
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} floor(1/gcd(i,k,n-i-k)). - Wesley Ivan Hurt, Jan 02 2021

A101271 Number of partitions of n into 3 distinct and relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 8, 9, 12, 12, 16, 15, 21, 20, 26, 25, 33, 28, 40, 36, 45, 42, 56, 44, 65, 56, 70, 64, 84, 66, 96, 81, 100, 88, 120, 90, 133, 110, 132, 121, 161, 120, 175, 140, 176, 156, 208, 153, 220, 180, 222, 196, 261, 184, 280, 225, 270, 240, 312, 230, 341, 272
Offset: 6

Views

Author

Vladeta Jovovic, Dec 19 2004

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A289509 (relatively prime), A005117 (strict), and A014612 (triple). - Gus Wiseman, Oct 15 2020

Examples

			For n=10 we have 4 such partitions: 1+2+7, 1+3+6, 1+4+5 and 2+3+5.
From _Gus Wiseman_, Oct 13 2020: (Start)
The a(6) = 1 through a(18) = 15 triples (A..F = 10..15):
  321  421  431  432  532  542  543  643  653  654  754  764  765
            521  531  541  632  651  652  743  753  763  854  873
                 621  631  641  732  742  752  762  853  863  954
                      721  731  741  751  761  843  871  872  972
                           821  831  832  851  852  943  953  981
                                921  841  932  861  952  962  A53
                                     931  941  942  961  971  A71
                                     A21  A31  951  A51  A43  B43
                                          B21  A32  B32  A52  B52
                                               A41  B41  A61  B61
                                               B31  C31  B42  C51
                                               C21  D21  B51  D32
                                                         C32  D41
                                                         C41  E31
                                                         D31  F21
                                                         E21
(End)
		

Crossrefs

A000741 is the ordered non-strict version.
A001399(n-6) does not require relative primality.
A023022 counts pairs instead of triples.
A023023 is the not necessarily strict version.
A078374 counts these partitions of any length, with Heinz numbers A302796.
A101271*6 is the ordered version.
A220377 is the pairwise coprime instead of relatively prime version.
A284825 counts the case that is pairwise non-coprime also.
A337605 is the pairwise non-coprime instead of relatively prime version.
A008289 counts strict partitions by sum and length.
A007304 gives the Heinz numbers of 3-part strict partitions.
A307719 counts 3-part pairwise coprime partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Programs

  • Maple
    m:=3: with(numtheory): g:=sum(mobius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k),i=1..m),k=1..20): gser:=series(g,x=0,80): seq(coeff(gser,x^n),n=6..77); # Emeric Deutsch, May 31 2005
  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&GCD@@#==1&]],{n,6,50}] (* Gus Wiseman, Oct 13 2020 *)

Formula

G.f. for the number of partitions of n into m distinct and relatively prime parts is Sum(moebius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k), i=1..m), k=1..infinity).

Extensions

More terms from Emeric Deutsch, May 31 2005
Previous Showing 31-40 of 265 results. Next